This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Change bound variable in a directed integral. (Contributed by Mario Carneiro, 7-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvditg.1 | |- ( x = y -> C = D ) |
|
| cbvditg.2 | |- F/_ y C |
||
| cbvditg.3 | |- F/_ x D |
||
| Assertion | cbvditg | |- S_ [ A -> B ] C _d x = S_ [ A -> B ] D _d y |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvditg.1 | |- ( x = y -> C = D ) |
|
| 2 | cbvditg.2 | |- F/_ y C |
|
| 3 | cbvditg.3 | |- F/_ x D |
|
| 4 | biid | |- ( A <_ B <-> A <_ B ) |
|
| 5 | 1 2 3 | cbvitg | |- S. ( A (,) B ) C _d x = S. ( A (,) B ) D _d y |
| 6 | 1 2 3 | cbvitg | |- S. ( B (,) A ) C _d x = S. ( B (,) A ) D _d y |
| 7 | 6 | negeqi | |- -u S. ( B (,) A ) C _d x = -u S. ( B (,) A ) D _d y |
| 8 | 4 5 7 | ifbieq12i | |- if ( A <_ B , S. ( A (,) B ) C _d x , -u S. ( B (,) A ) C _d x ) = if ( A <_ B , S. ( A (,) B ) D _d y , -u S. ( B (,) A ) D _d y ) |
| 9 | df-ditg | |- S_ [ A -> B ] C _d x = if ( A <_ B , S. ( A (,) B ) C _d x , -u S. ( B (,) A ) C _d x ) |
|
| 10 | df-ditg | |- S_ [ A -> B ] D _d y = if ( A <_ B , S. ( A (,) B ) D _d y , -u S. ( B (,) A ) D _d y ) |
|
| 11 | 8 9 10 | 3eqtr4i | |- S_ [ A -> B ] C _d x = S_ [ A -> B ] D _d y |