This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for the directed integral. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ditgeq3d.1 | |- ( ph -> A <_ B ) |
|
| ditgeq3d.2 | |- ( ( ph /\ x e. ( A (,) B ) ) -> D = E ) |
||
| Assertion | ditgeq3d | |- ( ph -> S_ [ A -> B ] D _d x = S_ [ A -> B ] E _d x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ditgeq3d.1 | |- ( ph -> A <_ B ) |
|
| 2 | ditgeq3d.2 | |- ( ( ph /\ x e. ( A (,) B ) ) -> D = E ) |
|
| 3 | df-ditg | |- S_ [ A -> B ] D _d x = if ( A <_ B , S. ( A (,) B ) D _d x , -u S. ( B (,) A ) D _d x ) |
|
| 4 | 1 | iftrued | |- ( ph -> if ( A <_ B , S. ( A (,) B ) D _d x , -u S. ( B (,) A ) D _d x ) = S. ( A (,) B ) D _d x ) |
| 5 | 3 4 | eqtrid | |- ( ph -> S_ [ A -> B ] D _d x = S. ( A (,) B ) D _d x ) |
| 6 | 2 | itgeq2dv | |- ( ph -> S. ( A (,) B ) D _d x = S. ( A (,) B ) E _d x ) |
| 7 | df-ditg | |- S_ [ A -> B ] E _d x = if ( A <_ B , S. ( A (,) B ) E _d x , -u S. ( B (,) A ) E _d x ) |
|
| 8 | 1 | iftrued | |- ( ph -> if ( A <_ B , S. ( A (,) B ) E _d x , -u S. ( B (,) A ) E _d x ) = S. ( A (,) B ) E _d x ) |
| 9 | 7 8 | eqtr2id | |- ( ph -> S. ( A (,) B ) E _d x = S_ [ A -> B ] E _d x ) |
| 10 | 5 6 9 | 3eqtrd | |- ( ph -> S_ [ A -> B ] D _d x = S_ [ A -> B ] E _d x ) |