This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If V ( x ) is an inverse to U ( x ) for each x , and U is a natural transformation, then V is also a natural transformation, and they are inverse in the functor category. (Contributed by Mario Carneiro, 28-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fuciso.q | |- Q = ( C FuncCat D ) |
|
| fuciso.b | |- B = ( Base ` C ) |
||
| fuciso.n | |- N = ( C Nat D ) |
||
| fuciso.f | |- ( ph -> F e. ( C Func D ) ) |
||
| fuciso.g | |- ( ph -> G e. ( C Func D ) ) |
||
| fucinv.i | |- I = ( Inv ` Q ) |
||
| fucinv.j | |- J = ( Inv ` D ) |
||
| invfuc.u | |- ( ph -> U e. ( F N G ) ) |
||
| invfuc.v | |- ( ( ph /\ x e. B ) -> ( U ` x ) ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) X ) |
||
| Assertion | invfuc | |- ( ph -> U ( F I G ) ( x e. B |-> X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fuciso.q | |- Q = ( C FuncCat D ) |
|
| 2 | fuciso.b | |- B = ( Base ` C ) |
|
| 3 | fuciso.n | |- N = ( C Nat D ) |
|
| 4 | fuciso.f | |- ( ph -> F e. ( C Func D ) ) |
|
| 5 | fuciso.g | |- ( ph -> G e. ( C Func D ) ) |
|
| 6 | fucinv.i | |- I = ( Inv ` Q ) |
|
| 7 | fucinv.j | |- J = ( Inv ` D ) |
|
| 8 | invfuc.u | |- ( ph -> U e. ( F N G ) ) |
|
| 9 | invfuc.v | |- ( ( ph /\ x e. B ) -> ( U ` x ) ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) X ) |
|
| 10 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 11 | funcrcl | |- ( F e. ( C Func D ) -> ( C e. Cat /\ D e. Cat ) ) |
|
| 12 | 4 11 | syl | |- ( ph -> ( C e. Cat /\ D e. Cat ) ) |
| 13 | 12 | simprd | |- ( ph -> D e. Cat ) |
| 14 | 13 | adantr | |- ( ( ph /\ x e. B ) -> D e. Cat ) |
| 15 | relfunc | |- Rel ( C Func D ) |
|
| 16 | 1st2ndbr | |- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
|
| 17 | 15 4 16 | sylancr | |- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 18 | 2 10 17 | funcf1 | |- ( ph -> ( 1st ` F ) : B --> ( Base ` D ) ) |
| 19 | 18 | ffvelcdmda | |- ( ( ph /\ x e. B ) -> ( ( 1st ` F ) ` x ) e. ( Base ` D ) ) |
| 20 | 1st2ndbr | |- ( ( Rel ( C Func D ) /\ G e. ( C Func D ) ) -> ( 1st ` G ) ( C Func D ) ( 2nd ` G ) ) |
|
| 21 | 15 5 20 | sylancr | |- ( ph -> ( 1st ` G ) ( C Func D ) ( 2nd ` G ) ) |
| 22 | 2 10 21 | funcf1 | |- ( ph -> ( 1st ` G ) : B --> ( Base ` D ) ) |
| 23 | 22 | ffvelcdmda | |- ( ( ph /\ x e. B ) -> ( ( 1st ` G ) ` x ) e. ( Base ` D ) ) |
| 24 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 25 | 10 7 14 19 23 24 | invss | |- ( ( ph /\ x e. B ) -> ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) C_ ( ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` G ) ` x ) ) X. ( ( ( 1st ` G ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) ) ) |
| 26 | 25 | ssbrd | |- ( ( ph /\ x e. B ) -> ( ( U ` x ) ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) X -> ( U ` x ) ( ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` G ) ` x ) ) X. ( ( ( 1st ` G ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) ) X ) ) |
| 27 | 9 26 | mpd | |- ( ( ph /\ x e. B ) -> ( U ` x ) ( ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` G ) ` x ) ) X. ( ( ( 1st ` G ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) ) X ) |
| 28 | brxp | |- ( ( U ` x ) ( ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` G ) ` x ) ) X. ( ( ( 1st ` G ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) ) X <-> ( ( U ` x ) e. ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` G ) ` x ) ) /\ X e. ( ( ( 1st ` G ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) ) ) |
|
| 29 | 28 | simprbi | |- ( ( U ` x ) ( ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` G ) ` x ) ) X. ( ( ( 1st ` G ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) ) X -> X e. ( ( ( 1st ` G ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) ) |
| 30 | 27 29 | syl | |- ( ( ph /\ x e. B ) -> X e. ( ( ( 1st ` G ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) ) |
| 31 | 30 | ralrimiva | |- ( ph -> A. x e. B X e. ( ( ( 1st ` G ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) ) |
| 32 | 2 | fvexi | |- B e. _V |
| 33 | mptelixpg | |- ( B e. _V -> ( ( x e. B |-> X ) e. X_ x e. B ( ( ( 1st ` G ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) <-> A. x e. B X e. ( ( ( 1st ` G ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) ) ) |
|
| 34 | 32 33 | ax-mp | |- ( ( x e. B |-> X ) e. X_ x e. B ( ( ( 1st ` G ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) <-> A. x e. B X e. ( ( ( 1st ` G ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) ) |
| 35 | 31 34 | sylibr | |- ( ph -> ( x e. B |-> X ) e. X_ x e. B ( ( ( 1st ` G ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) ) |
| 36 | fveq2 | |- ( x = y -> ( ( 1st ` G ) ` x ) = ( ( 1st ` G ) ` y ) ) |
|
| 37 | fveq2 | |- ( x = y -> ( ( 1st ` F ) ` x ) = ( ( 1st ` F ) ` y ) ) |
|
| 38 | 36 37 | oveq12d | |- ( x = y -> ( ( ( 1st ` G ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) = ( ( ( 1st ` G ) ` y ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) |
| 39 | 38 | cbvixpv | |- X_ x e. B ( ( ( 1st ` G ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) = X_ y e. B ( ( ( 1st ` G ) ` y ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) |
| 40 | 35 39 | eleqtrdi | |- ( ph -> ( x e. B |-> X ) e. X_ y e. B ( ( ( 1st ` G ) ` y ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) |
| 41 | simpr2 | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> z e. B ) |
|
| 42 | simpr | |- ( ( ph /\ x e. B ) -> x e. B ) |
|
| 43 | eqid | |- ( x e. B |-> X ) = ( x e. B |-> X ) |
|
| 44 | 43 | fvmpt2 | |- ( ( x e. B /\ X e. ( ( ( 1st ` G ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) ) -> ( ( x e. B |-> X ) ` x ) = X ) |
| 45 | 42 30 44 | syl2anc | |- ( ( ph /\ x e. B ) -> ( ( x e. B |-> X ) ` x ) = X ) |
| 46 | 9 45 | breqtrrd | |- ( ( ph /\ x e. B ) -> ( U ` x ) ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ( ( x e. B |-> X ) ` x ) ) |
| 47 | 46 | ralrimiva | |- ( ph -> A. x e. B ( U ` x ) ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ( ( x e. B |-> X ) ` x ) ) |
| 48 | 47 | adantr | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> A. x e. B ( U ` x ) ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ( ( x e. B |-> X ) ` x ) ) |
| 49 | nfcv | |- F/_ x ( U ` z ) |
|
| 50 | nfcv | |- F/_ x ( ( ( 1st ` F ) ` z ) J ( ( 1st ` G ) ` z ) ) |
|
| 51 | nffvmpt1 | |- F/_ x ( ( x e. B |-> X ) ` z ) |
|
| 52 | 49 50 51 | nfbr | |- F/ x ( U ` z ) ( ( ( 1st ` F ) ` z ) J ( ( 1st ` G ) ` z ) ) ( ( x e. B |-> X ) ` z ) |
| 53 | fveq2 | |- ( x = z -> ( U ` x ) = ( U ` z ) ) |
|
| 54 | fveq2 | |- ( x = z -> ( ( 1st ` F ) ` x ) = ( ( 1st ` F ) ` z ) ) |
|
| 55 | fveq2 | |- ( x = z -> ( ( 1st ` G ) ` x ) = ( ( 1st ` G ) ` z ) ) |
|
| 56 | 54 55 | oveq12d | |- ( x = z -> ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) = ( ( ( 1st ` F ) ` z ) J ( ( 1st ` G ) ` z ) ) ) |
| 57 | fveq2 | |- ( x = z -> ( ( x e. B |-> X ) ` x ) = ( ( x e. B |-> X ) ` z ) ) |
|
| 58 | 53 56 57 | breq123d | |- ( x = z -> ( ( U ` x ) ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ( ( x e. B |-> X ) ` x ) <-> ( U ` z ) ( ( ( 1st ` F ) ` z ) J ( ( 1st ` G ) ` z ) ) ( ( x e. B |-> X ) ` z ) ) ) |
| 59 | 52 58 | rspc | |- ( z e. B -> ( A. x e. B ( U ` x ) ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ( ( x e. B |-> X ) ` x ) -> ( U ` z ) ( ( ( 1st ` F ) ` z ) J ( ( 1st ` G ) ` z ) ) ( ( x e. B |-> X ) ` z ) ) ) |
| 60 | 41 48 59 | sylc | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( U ` z ) ( ( ( 1st ` F ) ` z ) J ( ( 1st ` G ) ` z ) ) ( ( x e. B |-> X ) ` z ) ) |
| 61 | 13 | adantr | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> D e. Cat ) |
| 62 | 18 | adantr | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( 1st ` F ) : B --> ( Base ` D ) ) |
| 63 | 62 41 | ffvelcdmd | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( 1st ` F ) ` z ) e. ( Base ` D ) ) |
| 64 | 22 | adantr | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( 1st ` G ) : B --> ( Base ` D ) ) |
| 65 | 64 41 | ffvelcdmd | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( 1st ` G ) ` z ) e. ( Base ` D ) ) |
| 66 | eqid | |- ( Sect ` D ) = ( Sect ` D ) |
|
| 67 | 10 7 61 63 65 66 | isinv | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( U ` z ) ( ( ( 1st ` F ) ` z ) J ( ( 1st ` G ) ` z ) ) ( ( x e. B |-> X ) ` z ) <-> ( ( U ` z ) ( ( ( 1st ` F ) ` z ) ( Sect ` D ) ( ( 1st ` G ) ` z ) ) ( ( x e. B |-> X ) ` z ) /\ ( ( x e. B |-> X ) ` z ) ( ( ( 1st ` G ) ` z ) ( Sect ` D ) ( ( 1st ` F ) ` z ) ) ( U ` z ) ) ) ) |
| 68 | 60 67 | mpbid | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( U ` z ) ( ( ( 1st ` F ) ` z ) ( Sect ` D ) ( ( 1st ` G ) ` z ) ) ( ( x e. B |-> X ) ` z ) /\ ( ( x e. B |-> X ) ` z ) ( ( ( 1st ` G ) ` z ) ( Sect ` D ) ( ( 1st ` F ) ` z ) ) ( U ` z ) ) ) |
| 69 | 68 | simpld | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( U ` z ) ( ( ( 1st ` F ) ` z ) ( Sect ` D ) ( ( 1st ` G ) ` z ) ) ( ( x e. B |-> X ) ` z ) ) |
| 70 | eqid | |- ( comp ` D ) = ( comp ` D ) |
|
| 71 | eqid | |- ( Id ` D ) = ( Id ` D ) |
|
| 72 | 10 24 70 71 66 61 63 65 | issect | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( U ` z ) ( ( ( 1st ` F ) ` z ) ( Sect ` D ) ( ( 1st ` G ) ` z ) ) ( ( x e. B |-> X ) ` z ) <-> ( ( U ` z ) e. ( ( ( 1st ` F ) ` z ) ( Hom ` D ) ( ( 1st ` G ) ` z ) ) /\ ( ( x e. B |-> X ) ` z ) e. ( ( ( 1st ` G ) ` z ) ( Hom ` D ) ( ( 1st ` F ) ` z ) ) /\ ( ( ( x e. B |-> X ) ` z ) ( <. ( ( 1st ` F ) ` z ) , ( ( 1st ` G ) ` z ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( U ` z ) ) = ( ( Id ` D ) ` ( ( 1st ` F ) ` z ) ) ) ) ) |
| 73 | 69 72 | mpbid | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( U ` z ) e. ( ( ( 1st ` F ) ` z ) ( Hom ` D ) ( ( 1st ` G ) ` z ) ) /\ ( ( x e. B |-> X ) ` z ) e. ( ( ( 1st ` G ) ` z ) ( Hom ` D ) ( ( 1st ` F ) ` z ) ) /\ ( ( ( x e. B |-> X ) ` z ) ( <. ( ( 1st ` F ) ` z ) , ( ( 1st ` G ) ` z ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( U ` z ) ) = ( ( Id ` D ) ` ( ( 1st ` F ) ` z ) ) ) ) |
| 74 | 73 | simp3d | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( ( x e. B |-> X ) ` z ) ( <. ( ( 1st ` F ) ` z ) , ( ( 1st ` G ) ` z ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( U ` z ) ) = ( ( Id ` D ) ` ( ( 1st ` F ) ` z ) ) ) |
| 75 | 74 | oveq1d | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( ( ( x e. B |-> X ) ` z ) ( <. ( ( 1st ` F ) ` z ) , ( ( 1st ` G ) ` z ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( U ` z ) ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` F ) ` z ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( y ( 2nd ` F ) z ) ` f ) ) = ( ( ( Id ` D ) ` ( ( 1st ` F ) ` z ) ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` F ) ` z ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( y ( 2nd ` F ) z ) ` f ) ) ) |
| 76 | simpr1 | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> y e. B ) |
|
| 77 | 62 76 | ffvelcdmd | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( 1st ` F ) ` y ) e. ( Base ` D ) ) |
| 78 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 79 | 17 | adantr | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 80 | 2 78 24 79 76 41 | funcf2 | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( y ( 2nd ` F ) z ) : ( y ( Hom ` C ) z ) --> ( ( ( 1st ` F ) ` y ) ( Hom ` D ) ( ( 1st ` F ) ` z ) ) ) |
| 81 | simpr3 | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> f e. ( y ( Hom ` C ) z ) ) |
|
| 82 | 80 81 | ffvelcdmd | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( y ( 2nd ` F ) z ) ` f ) e. ( ( ( 1st ` F ) ` y ) ( Hom ` D ) ( ( 1st ` F ) ` z ) ) ) |
| 83 | 10 24 71 61 77 70 63 82 | catlid | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( ( Id ` D ) ` ( ( 1st ` F ) ` z ) ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` F ) ` z ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( y ( 2nd ` F ) z ) ` f ) ) = ( ( y ( 2nd ` F ) z ) ` f ) ) |
| 84 | 75 83 | eqtr2d | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( y ( 2nd ` F ) z ) ` f ) = ( ( ( ( x e. B |-> X ) ` z ) ( <. ( ( 1st ` F ) ` z ) , ( ( 1st ` G ) ` z ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( U ` z ) ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` F ) ` z ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( y ( 2nd ` F ) z ) ` f ) ) ) |
| 85 | 8 | adantr | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> U e. ( F N G ) ) |
| 86 | 3 85 | nat1st2nd | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> U e. ( <. ( 1st ` F ) , ( 2nd ` F ) >. N <. ( 1st ` G ) , ( 2nd ` G ) >. ) ) |
| 87 | 3 86 2 24 41 | natcl | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( U ` z ) e. ( ( ( 1st ` F ) ` z ) ( Hom ` D ) ( ( 1st ` G ) ` z ) ) ) |
| 88 | 73 | simp2d | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( x e. B |-> X ) ` z ) e. ( ( ( 1st ` G ) ` z ) ( Hom ` D ) ( ( 1st ` F ) ` z ) ) ) |
| 89 | 10 24 70 61 77 63 65 82 87 63 88 | catass | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( ( ( x e. B |-> X ) ` z ) ( <. ( ( 1st ` F ) ` z ) , ( ( 1st ` G ) ` z ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( U ` z ) ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` F ) ` z ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( y ( 2nd ` F ) z ) ` f ) ) = ( ( ( x e. B |-> X ) ` z ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` G ) ` z ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( U ` z ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` F ) ` z ) >. ( comp ` D ) ( ( 1st ` G ) ` z ) ) ( ( y ( 2nd ` F ) z ) ` f ) ) ) ) |
| 90 | 3 86 2 78 70 76 41 81 | nati | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( U ` z ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` F ) ` z ) >. ( comp ` D ) ( ( 1st ` G ) ` z ) ) ( ( y ( 2nd ` F ) z ) ` f ) ) = ( ( ( y ( 2nd ` G ) z ) ` f ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` z ) ) ( U ` y ) ) ) |
| 91 | 90 | oveq2d | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( ( x e. B |-> X ) ` z ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` G ) ` z ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( U ` z ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` F ) ` z ) >. ( comp ` D ) ( ( 1st ` G ) ` z ) ) ( ( y ( 2nd ` F ) z ) ` f ) ) ) = ( ( ( x e. B |-> X ) ` z ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` G ) ` z ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( ( y ( 2nd ` G ) z ) ` f ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` z ) ) ( U ` y ) ) ) ) |
| 92 | 84 89 91 | 3eqtrd | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( y ( 2nd ` F ) z ) ` f ) = ( ( ( x e. B |-> X ) ` z ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` G ) ` z ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( ( y ( 2nd ` G ) z ) ` f ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` z ) ) ( U ` y ) ) ) ) |
| 93 | 92 | oveq1d | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( ( y ( 2nd ` F ) z ) ` f ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( x e. B |-> X ) ` y ) ) = ( ( ( ( x e. B |-> X ) ` z ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` G ) ` z ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( ( y ( 2nd ` G ) z ) ` f ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` z ) ) ( U ` y ) ) ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( x e. B |-> X ) ` y ) ) ) |
| 94 | 64 76 | ffvelcdmd | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( 1st ` G ) ` y ) e. ( Base ` D ) ) |
| 95 | nfcv | |- F/_ x ( U ` y ) |
|
| 96 | nfcv | |- F/_ x ( ( ( 1st ` F ) ` y ) J ( ( 1st ` G ) ` y ) ) |
|
| 97 | nffvmpt1 | |- F/_ x ( ( x e. B |-> X ) ` y ) |
|
| 98 | 95 96 97 | nfbr | |- F/ x ( U ` y ) ( ( ( 1st ` F ) ` y ) J ( ( 1st ` G ) ` y ) ) ( ( x e. B |-> X ) ` y ) |
| 99 | fveq2 | |- ( x = y -> ( U ` x ) = ( U ` y ) ) |
|
| 100 | 37 36 | oveq12d | |- ( x = y -> ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) = ( ( ( 1st ` F ) ` y ) J ( ( 1st ` G ) ` y ) ) ) |
| 101 | fveq2 | |- ( x = y -> ( ( x e. B |-> X ) ` x ) = ( ( x e. B |-> X ) ` y ) ) |
|
| 102 | 99 100 101 | breq123d | |- ( x = y -> ( ( U ` x ) ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ( ( x e. B |-> X ) ` x ) <-> ( U ` y ) ( ( ( 1st ` F ) ` y ) J ( ( 1st ` G ) ` y ) ) ( ( x e. B |-> X ) ` y ) ) ) |
| 103 | 98 102 | rspc | |- ( y e. B -> ( A. x e. B ( U ` x ) ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ( ( x e. B |-> X ) ` x ) -> ( U ` y ) ( ( ( 1st ` F ) ` y ) J ( ( 1st ` G ) ` y ) ) ( ( x e. B |-> X ) ` y ) ) ) |
| 104 | 76 48 103 | sylc | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( U ` y ) ( ( ( 1st ` F ) ` y ) J ( ( 1st ` G ) ` y ) ) ( ( x e. B |-> X ) ` y ) ) |
| 105 | 10 7 61 77 94 66 | isinv | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( U ` y ) ( ( ( 1st ` F ) ` y ) J ( ( 1st ` G ) ` y ) ) ( ( x e. B |-> X ) ` y ) <-> ( ( U ` y ) ( ( ( 1st ` F ) ` y ) ( Sect ` D ) ( ( 1st ` G ) ` y ) ) ( ( x e. B |-> X ) ` y ) /\ ( ( x e. B |-> X ) ` y ) ( ( ( 1st ` G ) ` y ) ( Sect ` D ) ( ( 1st ` F ) ` y ) ) ( U ` y ) ) ) ) |
| 106 | 104 105 | mpbid | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( U ` y ) ( ( ( 1st ` F ) ` y ) ( Sect ` D ) ( ( 1st ` G ) ` y ) ) ( ( x e. B |-> X ) ` y ) /\ ( ( x e. B |-> X ) ` y ) ( ( ( 1st ` G ) ` y ) ( Sect ` D ) ( ( 1st ` F ) ` y ) ) ( U ` y ) ) ) |
| 107 | 106 | simprd | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( x e. B |-> X ) ` y ) ( ( ( 1st ` G ) ` y ) ( Sect ` D ) ( ( 1st ` F ) ` y ) ) ( U ` y ) ) |
| 108 | 10 24 70 71 66 61 94 77 | issect | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( ( x e. B |-> X ) ` y ) ( ( ( 1st ` G ) ` y ) ( Sect ` D ) ( ( 1st ` F ) ` y ) ) ( U ` y ) <-> ( ( ( x e. B |-> X ) ` y ) e. ( ( ( 1st ` G ) ` y ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) /\ ( U ` y ) e. ( ( ( 1st ` F ) ` y ) ( Hom ` D ) ( ( 1st ` G ) ` y ) ) /\ ( ( U ` y ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` y ) ) ( ( x e. B |-> X ) ` y ) ) = ( ( Id ` D ) ` ( ( 1st ` G ) ` y ) ) ) ) ) |
| 109 | 107 108 | mpbid | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( ( x e. B |-> X ) ` y ) e. ( ( ( 1st ` G ) ` y ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) /\ ( U ` y ) e. ( ( ( 1st ` F ) ` y ) ( Hom ` D ) ( ( 1st ` G ) ` y ) ) /\ ( ( U ` y ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` y ) ) ( ( x e. B |-> X ) ` y ) ) = ( ( Id ` D ) ` ( ( 1st ` G ) ` y ) ) ) ) |
| 110 | 109 | simp1d | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( x e. B |-> X ) ` y ) e. ( ( ( 1st ` G ) ` y ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) |
| 111 | 109 | simp2d | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( U ` y ) e. ( ( ( 1st ` F ) ` y ) ( Hom ` D ) ( ( 1st ` G ) ` y ) ) ) |
| 112 | 21 | adantr | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( 1st ` G ) ( C Func D ) ( 2nd ` G ) ) |
| 113 | 2 78 24 112 76 41 | funcf2 | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( y ( 2nd ` G ) z ) : ( y ( Hom ` C ) z ) --> ( ( ( 1st ` G ) ` y ) ( Hom ` D ) ( ( 1st ` G ) ` z ) ) ) |
| 114 | 113 81 | ffvelcdmd | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( y ( 2nd ` G ) z ) ` f ) e. ( ( ( 1st ` G ) ` y ) ( Hom ` D ) ( ( 1st ` G ) ` z ) ) ) |
| 115 | 10 24 70 61 77 94 65 111 114 | catcocl | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( ( y ( 2nd ` G ) z ) ` f ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` z ) ) ( U ` y ) ) e. ( ( ( 1st ` F ) ` y ) ( Hom ` D ) ( ( 1st ` G ) ` z ) ) ) |
| 116 | 10 24 70 61 94 77 65 110 115 63 88 | catass | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( ( ( x e. B |-> X ) ` z ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` G ) ` z ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( ( y ( 2nd ` G ) z ) ` f ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` z ) ) ( U ` y ) ) ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( x e. B |-> X ) ` y ) ) = ( ( ( x e. B |-> X ) ` z ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` G ) ` z ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( ( ( y ( 2nd ` G ) z ) ` f ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` z ) ) ( U ` y ) ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` z ) ) ( ( x e. B |-> X ) ` y ) ) ) ) |
| 117 | 3 86 2 24 76 | natcl | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( U ` y ) e. ( ( ( 1st ` F ) ` y ) ( Hom ` D ) ( ( 1st ` G ) ` y ) ) ) |
| 118 | 10 24 70 61 94 77 94 110 117 65 114 | catass | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( ( ( y ( 2nd ` G ) z ) ` f ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` z ) ) ( U ` y ) ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` z ) ) ( ( x e. B |-> X ) ` y ) ) = ( ( ( y ( 2nd ` G ) z ) ` f ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` z ) ) ( ( U ` y ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` y ) ) ( ( x e. B |-> X ) ` y ) ) ) ) |
| 119 | 109 | simp3d | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( U ` y ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` y ) ) ( ( x e. B |-> X ) ` y ) ) = ( ( Id ` D ) ` ( ( 1st ` G ) ` y ) ) ) |
| 120 | 119 | oveq2d | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( ( y ( 2nd ` G ) z ) ` f ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` z ) ) ( ( U ` y ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` y ) ) ( ( x e. B |-> X ) ` y ) ) ) = ( ( ( y ( 2nd ` G ) z ) ` f ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` z ) ) ( ( Id ` D ) ` ( ( 1st ` G ) ` y ) ) ) ) |
| 121 | 10 24 71 61 94 70 65 114 | catrid | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( ( y ( 2nd ` G ) z ) ` f ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` z ) ) ( ( Id ` D ) ` ( ( 1st ` G ) ` y ) ) ) = ( ( y ( 2nd ` G ) z ) ` f ) ) |
| 122 | 118 120 121 | 3eqtrd | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( ( ( y ( 2nd ` G ) z ) ` f ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` z ) ) ( U ` y ) ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` z ) ) ( ( x e. B |-> X ) ` y ) ) = ( ( y ( 2nd ` G ) z ) ` f ) ) |
| 123 | 122 | oveq2d | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( ( x e. B |-> X ) ` z ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` G ) ` z ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( ( ( y ( 2nd ` G ) z ) ` f ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` z ) ) ( U ` y ) ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` z ) ) ( ( x e. B |-> X ) ` y ) ) ) = ( ( ( x e. B |-> X ) ` z ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` G ) ` z ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( y ( 2nd ` G ) z ) ` f ) ) ) |
| 124 | 93 116 123 | 3eqtrrd | |- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( ( x e. B |-> X ) ` z ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` G ) ` z ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( y ( 2nd ` G ) z ) ` f ) ) = ( ( ( y ( 2nd ` F ) z ) ` f ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( x e. B |-> X ) ` y ) ) ) |
| 125 | 124 | ralrimivvva | |- ( ph -> A. y e. B A. z e. B A. f e. ( y ( Hom ` C ) z ) ( ( ( x e. B |-> X ) ` z ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` G ) ` z ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( y ( 2nd ` G ) z ) ` f ) ) = ( ( ( y ( 2nd ` F ) z ) ` f ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( x e. B |-> X ) ` y ) ) ) |
| 126 | 3 2 78 24 70 5 4 | isnat2 | |- ( ph -> ( ( x e. B |-> X ) e. ( G N F ) <-> ( ( x e. B |-> X ) e. X_ y e. B ( ( ( 1st ` G ) ` y ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) /\ A. y e. B A. z e. B A. f e. ( y ( Hom ` C ) z ) ( ( ( x e. B |-> X ) ` z ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` G ) ` z ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( y ( 2nd ` G ) z ) ` f ) ) = ( ( ( y ( 2nd ` F ) z ) ` f ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( x e. B |-> X ) ` y ) ) ) ) ) |
| 127 | 40 125 126 | mpbir2and | |- ( ph -> ( x e. B |-> X ) e. ( G N F ) ) |
| 128 | nfv | |- F/ y ( U ` x ) ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ( ( x e. B |-> X ) ` x ) |
|
| 129 | 128 98 102 | cbvralw | |- ( A. x e. B ( U ` x ) ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ( ( x e. B |-> X ) ` x ) <-> A. y e. B ( U ` y ) ( ( ( 1st ` F ) ` y ) J ( ( 1st ` G ) ` y ) ) ( ( x e. B |-> X ) ` y ) ) |
| 130 | 47 129 | sylib | |- ( ph -> A. y e. B ( U ` y ) ( ( ( 1st ` F ) ` y ) J ( ( 1st ` G ) ` y ) ) ( ( x e. B |-> X ) ` y ) ) |
| 131 | 1 2 3 4 5 6 7 | fucinv | |- ( ph -> ( U ( F I G ) ( x e. B |-> X ) <-> ( U e. ( F N G ) /\ ( x e. B |-> X ) e. ( G N F ) /\ A. y e. B ( U ` y ) ( ( ( 1st ` F ) ` y ) J ( ( 1st ` G ) ` y ) ) ( ( x e. B |-> X ) ` y ) ) ) ) |
| 132 | 8 127 130 131 | mpbir3and | |- ( ph -> U ( F I G ) ( x e. B |-> X ) ) |