This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Naturality property of a natural transformation. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | natrcl.1 | |- N = ( C Nat D ) |
|
| natixp.2 | |- ( ph -> A e. ( <. F , G >. N <. K , L >. ) ) |
||
| natixp.b | |- B = ( Base ` C ) |
||
| nati.h | |- H = ( Hom ` C ) |
||
| nati.o | |- .x. = ( comp ` D ) |
||
| nati.x | |- ( ph -> X e. B ) |
||
| nati.y | |- ( ph -> Y e. B ) |
||
| nati.r | |- ( ph -> R e. ( X H Y ) ) |
||
| Assertion | nati | |- ( ph -> ( ( A ` Y ) ( <. ( F ` X ) , ( F ` Y ) >. .x. ( K ` Y ) ) ( ( X G Y ) ` R ) ) = ( ( ( X L Y ) ` R ) ( <. ( F ` X ) , ( K ` X ) >. .x. ( K ` Y ) ) ( A ` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | natrcl.1 | |- N = ( C Nat D ) |
|
| 2 | natixp.2 | |- ( ph -> A e. ( <. F , G >. N <. K , L >. ) ) |
|
| 3 | natixp.b | |- B = ( Base ` C ) |
|
| 4 | nati.h | |- H = ( Hom ` C ) |
|
| 5 | nati.o | |- .x. = ( comp ` D ) |
|
| 6 | nati.x | |- ( ph -> X e. B ) |
|
| 7 | nati.y | |- ( ph -> Y e. B ) |
|
| 8 | nati.r | |- ( ph -> R e. ( X H Y ) ) |
|
| 9 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 10 | 1 | natrcl | |- ( A e. ( <. F , G >. N <. K , L >. ) -> ( <. F , G >. e. ( C Func D ) /\ <. K , L >. e. ( C Func D ) ) ) |
| 11 | 2 10 | syl | |- ( ph -> ( <. F , G >. e. ( C Func D ) /\ <. K , L >. e. ( C Func D ) ) ) |
| 12 | 11 | simpld | |- ( ph -> <. F , G >. e. ( C Func D ) ) |
| 13 | df-br | |- ( F ( C Func D ) G <-> <. F , G >. e. ( C Func D ) ) |
|
| 14 | 12 13 | sylibr | |- ( ph -> F ( C Func D ) G ) |
| 15 | 11 | simprd | |- ( ph -> <. K , L >. e. ( C Func D ) ) |
| 16 | df-br | |- ( K ( C Func D ) L <-> <. K , L >. e. ( C Func D ) ) |
|
| 17 | 15 16 | sylibr | |- ( ph -> K ( C Func D ) L ) |
| 18 | 1 3 4 9 5 14 17 | isnat | |- ( ph -> ( A e. ( <. F , G >. N <. K , L >. ) <-> ( A e. X_ x e. B ( ( F ` x ) ( Hom ` D ) ( K ` x ) ) /\ A. x e. B A. y e. B A. f e. ( x H y ) ( ( A ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` f ) ) = ( ( ( x L y ) ` f ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( A ` x ) ) ) ) ) |
| 19 | 2 18 | mpbid | |- ( ph -> ( A e. X_ x e. B ( ( F ` x ) ( Hom ` D ) ( K ` x ) ) /\ A. x e. B A. y e. B A. f e. ( x H y ) ( ( A ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` f ) ) = ( ( ( x L y ) ` f ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( A ` x ) ) ) ) |
| 20 | 19 | simprd | |- ( ph -> A. x e. B A. y e. B A. f e. ( x H y ) ( ( A ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` f ) ) = ( ( ( x L y ) ` f ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( A ` x ) ) ) |
| 21 | 7 | adantr | |- ( ( ph /\ x = X ) -> Y e. B ) |
| 22 | 8 | ad2antrr | |- ( ( ( ph /\ x = X ) /\ y = Y ) -> R e. ( X H Y ) ) |
| 23 | simplr | |- ( ( ( ph /\ x = X ) /\ y = Y ) -> x = X ) |
|
| 24 | simpr | |- ( ( ( ph /\ x = X ) /\ y = Y ) -> y = Y ) |
|
| 25 | 23 24 | oveq12d | |- ( ( ( ph /\ x = X ) /\ y = Y ) -> ( x H y ) = ( X H Y ) ) |
| 26 | 22 25 | eleqtrrd | |- ( ( ( ph /\ x = X ) /\ y = Y ) -> R e. ( x H y ) ) |
| 27 | simpllr | |- ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ f = R ) -> x = X ) |
|
| 28 | 27 | fveq2d | |- ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ f = R ) -> ( F ` x ) = ( F ` X ) ) |
| 29 | simplr | |- ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ f = R ) -> y = Y ) |
|
| 30 | 29 | fveq2d | |- ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ f = R ) -> ( F ` y ) = ( F ` Y ) ) |
| 31 | 28 30 | opeq12d | |- ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ f = R ) -> <. ( F ` x ) , ( F ` y ) >. = <. ( F ` X ) , ( F ` Y ) >. ) |
| 32 | 29 | fveq2d | |- ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ f = R ) -> ( K ` y ) = ( K ` Y ) ) |
| 33 | 31 32 | oveq12d | |- ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ f = R ) -> ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) = ( <. ( F ` X ) , ( F ` Y ) >. .x. ( K ` Y ) ) ) |
| 34 | 29 | fveq2d | |- ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ f = R ) -> ( A ` y ) = ( A ` Y ) ) |
| 35 | 27 29 | oveq12d | |- ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ f = R ) -> ( x G y ) = ( X G Y ) ) |
| 36 | simpr | |- ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ f = R ) -> f = R ) |
|
| 37 | 35 36 | fveq12d | |- ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ f = R ) -> ( ( x G y ) ` f ) = ( ( X G Y ) ` R ) ) |
| 38 | 33 34 37 | oveq123d | |- ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ f = R ) -> ( ( A ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` f ) ) = ( ( A ` Y ) ( <. ( F ` X ) , ( F ` Y ) >. .x. ( K ` Y ) ) ( ( X G Y ) ` R ) ) ) |
| 39 | 27 | fveq2d | |- ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ f = R ) -> ( K ` x ) = ( K ` X ) ) |
| 40 | 28 39 | opeq12d | |- ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ f = R ) -> <. ( F ` x ) , ( K ` x ) >. = <. ( F ` X ) , ( K ` X ) >. ) |
| 41 | 40 32 | oveq12d | |- ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ f = R ) -> ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) = ( <. ( F ` X ) , ( K ` X ) >. .x. ( K ` Y ) ) ) |
| 42 | 27 29 | oveq12d | |- ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ f = R ) -> ( x L y ) = ( X L Y ) ) |
| 43 | 42 36 | fveq12d | |- ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ f = R ) -> ( ( x L y ) ` f ) = ( ( X L Y ) ` R ) ) |
| 44 | 27 | fveq2d | |- ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ f = R ) -> ( A ` x ) = ( A ` X ) ) |
| 45 | 41 43 44 | oveq123d | |- ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ f = R ) -> ( ( ( x L y ) ` f ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( A ` x ) ) = ( ( ( X L Y ) ` R ) ( <. ( F ` X ) , ( K ` X ) >. .x. ( K ` Y ) ) ( A ` X ) ) ) |
| 46 | 38 45 | eqeq12d | |- ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ f = R ) -> ( ( ( A ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` f ) ) = ( ( ( x L y ) ` f ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( A ` x ) ) <-> ( ( A ` Y ) ( <. ( F ` X ) , ( F ` Y ) >. .x. ( K ` Y ) ) ( ( X G Y ) ` R ) ) = ( ( ( X L Y ) ` R ) ( <. ( F ` X ) , ( K ` X ) >. .x. ( K ` Y ) ) ( A ` X ) ) ) ) |
| 47 | 26 46 | rspcdv | |- ( ( ( ph /\ x = X ) /\ y = Y ) -> ( A. f e. ( x H y ) ( ( A ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` f ) ) = ( ( ( x L y ) ` f ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( A ` x ) ) -> ( ( A ` Y ) ( <. ( F ` X ) , ( F ` Y ) >. .x. ( K ` Y ) ) ( ( X G Y ) ` R ) ) = ( ( ( X L Y ) ` R ) ( <. ( F ` X ) , ( K ` X ) >. .x. ( K ` Y ) ) ( A ` X ) ) ) ) |
| 48 | 21 47 | rspcimdv | |- ( ( ph /\ x = X ) -> ( A. y e. B A. f e. ( x H y ) ( ( A ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` f ) ) = ( ( ( x L y ) ` f ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( A ` x ) ) -> ( ( A ` Y ) ( <. ( F ` X ) , ( F ` Y ) >. .x. ( K ` Y ) ) ( ( X G Y ) ` R ) ) = ( ( ( X L Y ) ` R ) ( <. ( F ` X ) , ( K ` X ) >. .x. ( K ` Y ) ) ( A ` X ) ) ) ) |
| 49 | 6 48 | rspcimdv | |- ( ph -> ( A. x e. B A. y e. B A. f e. ( x H y ) ( ( A ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` f ) ) = ( ( ( x L y ) ` f ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( A ` x ) ) -> ( ( A ` Y ) ( <. ( F ` X ) , ( F ` Y ) >. .x. ( K ` Y ) ) ( ( X G Y ) ` R ) ) = ( ( ( X L Y ) ` R ) ( <. ( F ` X ) , ( K ` X ) >. .x. ( K ` Y ) ) ( A ` X ) ) ) ) |
| 50 | 20 49 | mpd | |- ( ph -> ( ( A ` Y ) ( <. ( F ` X ) , ( F ` Y ) >. .x. ( K ` Y ) ) ( ( X G Y ) ` R ) ) = ( ( ( X L Y ) ` R ) ( <. ( F ` X ) , ( K ` X ) >. .x. ( K ` Y ) ) ( A ` X ) ) ) |