This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A natural transformation is an isomorphism of functors iff all its components are isomorphisms. (Contributed by Mario Carneiro, 28-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fuciso.q | |- Q = ( C FuncCat D ) |
|
| fuciso.b | |- B = ( Base ` C ) |
||
| fuciso.n | |- N = ( C Nat D ) |
||
| fuciso.f | |- ( ph -> F e. ( C Func D ) ) |
||
| fuciso.g | |- ( ph -> G e. ( C Func D ) ) |
||
| fuciso.i | |- I = ( Iso ` Q ) |
||
| fuciso.j | |- J = ( Iso ` D ) |
||
| Assertion | fuciso | |- ( ph -> ( A e. ( F I G ) <-> ( A e. ( F N G ) /\ A. x e. B ( A ` x ) e. ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fuciso.q | |- Q = ( C FuncCat D ) |
|
| 2 | fuciso.b | |- B = ( Base ` C ) |
|
| 3 | fuciso.n | |- N = ( C Nat D ) |
|
| 4 | fuciso.f | |- ( ph -> F e. ( C Func D ) ) |
|
| 5 | fuciso.g | |- ( ph -> G e. ( C Func D ) ) |
|
| 6 | fuciso.i | |- I = ( Iso ` Q ) |
|
| 7 | fuciso.j | |- J = ( Iso ` D ) |
|
| 8 | 1 | fucbas | |- ( C Func D ) = ( Base ` Q ) |
| 9 | 1 3 | fuchom | |- N = ( Hom ` Q ) |
| 10 | funcrcl | |- ( F e. ( C Func D ) -> ( C e. Cat /\ D e. Cat ) ) |
|
| 11 | 4 10 | syl | |- ( ph -> ( C e. Cat /\ D e. Cat ) ) |
| 12 | 11 | simpld | |- ( ph -> C e. Cat ) |
| 13 | 11 | simprd | |- ( ph -> D e. Cat ) |
| 14 | 1 12 13 | fuccat | |- ( ph -> Q e. Cat ) |
| 15 | 8 9 6 14 4 5 | isohom | |- ( ph -> ( F I G ) C_ ( F N G ) ) |
| 16 | 15 | sselda | |- ( ( ph /\ A e. ( F I G ) ) -> A e. ( F N G ) ) |
| 17 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 18 | eqid | |- ( Inv ` D ) = ( Inv ` D ) |
|
| 19 | 13 | ad2antrr | |- ( ( ( ph /\ A e. ( F I G ) ) /\ x e. B ) -> D e. Cat ) |
| 20 | relfunc | |- Rel ( C Func D ) |
|
| 21 | 1st2ndbr | |- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
|
| 22 | 20 4 21 | sylancr | |- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 23 | 2 17 22 | funcf1 | |- ( ph -> ( 1st ` F ) : B --> ( Base ` D ) ) |
| 24 | 23 | adantr | |- ( ( ph /\ A e. ( F I G ) ) -> ( 1st ` F ) : B --> ( Base ` D ) ) |
| 25 | 24 | ffvelcdmda | |- ( ( ( ph /\ A e. ( F I G ) ) /\ x e. B ) -> ( ( 1st ` F ) ` x ) e. ( Base ` D ) ) |
| 26 | 1st2ndbr | |- ( ( Rel ( C Func D ) /\ G e. ( C Func D ) ) -> ( 1st ` G ) ( C Func D ) ( 2nd ` G ) ) |
|
| 27 | 20 5 26 | sylancr | |- ( ph -> ( 1st ` G ) ( C Func D ) ( 2nd ` G ) ) |
| 28 | 2 17 27 | funcf1 | |- ( ph -> ( 1st ` G ) : B --> ( Base ` D ) ) |
| 29 | 28 | adantr | |- ( ( ph /\ A e. ( F I G ) ) -> ( 1st ` G ) : B --> ( Base ` D ) ) |
| 30 | 29 | ffvelcdmda | |- ( ( ( ph /\ A e. ( F I G ) ) /\ x e. B ) -> ( ( 1st ` G ) ` x ) e. ( Base ` D ) ) |
| 31 | eqid | |- ( Inv ` Q ) = ( Inv ` Q ) |
|
| 32 | 8 31 14 4 5 6 | isoval | |- ( ph -> ( F I G ) = dom ( F ( Inv ` Q ) G ) ) |
| 33 | 32 | eleq2d | |- ( ph -> ( A e. ( F I G ) <-> A e. dom ( F ( Inv ` Q ) G ) ) ) |
| 34 | 8 31 14 4 5 | invfun | |- ( ph -> Fun ( F ( Inv ` Q ) G ) ) |
| 35 | funfvbrb | |- ( Fun ( F ( Inv ` Q ) G ) -> ( A e. dom ( F ( Inv ` Q ) G ) <-> A ( F ( Inv ` Q ) G ) ( ( F ( Inv ` Q ) G ) ` A ) ) ) |
|
| 36 | 34 35 | syl | |- ( ph -> ( A e. dom ( F ( Inv ` Q ) G ) <-> A ( F ( Inv ` Q ) G ) ( ( F ( Inv ` Q ) G ) ` A ) ) ) |
| 37 | 33 36 | bitrd | |- ( ph -> ( A e. ( F I G ) <-> A ( F ( Inv ` Q ) G ) ( ( F ( Inv ` Q ) G ) ` A ) ) ) |
| 38 | 37 | biimpa | |- ( ( ph /\ A e. ( F I G ) ) -> A ( F ( Inv ` Q ) G ) ( ( F ( Inv ` Q ) G ) ` A ) ) |
| 39 | 1 2 3 4 5 31 18 | fucinv | |- ( ph -> ( A ( F ( Inv ` Q ) G ) ( ( F ( Inv ` Q ) G ) ` A ) <-> ( A e. ( F N G ) /\ ( ( F ( Inv ` Q ) G ) ` A ) e. ( G N F ) /\ A. x e. B ( A ` x ) ( ( ( 1st ` F ) ` x ) ( Inv ` D ) ( ( 1st ` G ) ` x ) ) ( ( ( F ( Inv ` Q ) G ) ` A ) ` x ) ) ) ) |
| 40 | 39 | adantr | |- ( ( ph /\ A e. ( F I G ) ) -> ( A ( F ( Inv ` Q ) G ) ( ( F ( Inv ` Q ) G ) ` A ) <-> ( A e. ( F N G ) /\ ( ( F ( Inv ` Q ) G ) ` A ) e. ( G N F ) /\ A. x e. B ( A ` x ) ( ( ( 1st ` F ) ` x ) ( Inv ` D ) ( ( 1st ` G ) ` x ) ) ( ( ( F ( Inv ` Q ) G ) ` A ) ` x ) ) ) ) |
| 41 | 38 40 | mpbid | |- ( ( ph /\ A e. ( F I G ) ) -> ( A e. ( F N G ) /\ ( ( F ( Inv ` Q ) G ) ` A ) e. ( G N F ) /\ A. x e. B ( A ` x ) ( ( ( 1st ` F ) ` x ) ( Inv ` D ) ( ( 1st ` G ) ` x ) ) ( ( ( F ( Inv ` Q ) G ) ` A ) ` x ) ) ) |
| 42 | 41 | simp3d | |- ( ( ph /\ A e. ( F I G ) ) -> A. x e. B ( A ` x ) ( ( ( 1st ` F ) ` x ) ( Inv ` D ) ( ( 1st ` G ) ` x ) ) ( ( ( F ( Inv ` Q ) G ) ` A ) ` x ) ) |
| 43 | 42 | r19.21bi | |- ( ( ( ph /\ A e. ( F I G ) ) /\ x e. B ) -> ( A ` x ) ( ( ( 1st ` F ) ` x ) ( Inv ` D ) ( ( 1st ` G ) ` x ) ) ( ( ( F ( Inv ` Q ) G ) ` A ) ` x ) ) |
| 44 | 17 18 19 25 30 7 43 | inviso1 | |- ( ( ( ph /\ A e. ( F I G ) ) /\ x e. B ) -> ( A ` x ) e. ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ) |
| 45 | 44 | ralrimiva | |- ( ( ph /\ A e. ( F I G ) ) -> A. x e. B ( A ` x ) e. ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ) |
| 46 | 16 45 | jca | |- ( ( ph /\ A e. ( F I G ) ) -> ( A e. ( F N G ) /\ A. x e. B ( A ` x ) e. ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ) ) |
| 47 | 14 | adantr | |- ( ( ph /\ ( A e. ( F N G ) /\ A. x e. B ( A ` x ) e. ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ) ) -> Q e. Cat ) |
| 48 | 4 | adantr | |- ( ( ph /\ ( A e. ( F N G ) /\ A. x e. B ( A ` x ) e. ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ) ) -> F e. ( C Func D ) ) |
| 49 | 5 | adantr | |- ( ( ph /\ ( A e. ( F N G ) /\ A. x e. B ( A ` x ) e. ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ) ) -> G e. ( C Func D ) ) |
| 50 | simprl | |- ( ( ph /\ ( A e. ( F N G ) /\ A. x e. B ( A ` x ) e. ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ) ) -> A e. ( F N G ) ) |
|
| 51 | 13 | ad2antrr | |- ( ( ( ph /\ ( A e. ( F N G ) /\ A. x e. B ( A ` x ) e. ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ) ) /\ y e. B ) -> D e. Cat ) |
| 52 | 23 | adantr | |- ( ( ph /\ ( A e. ( F N G ) /\ A. x e. B ( A ` x ) e. ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ) ) -> ( 1st ` F ) : B --> ( Base ` D ) ) |
| 53 | 52 | ffvelcdmda | |- ( ( ( ph /\ ( A e. ( F N G ) /\ A. x e. B ( A ` x ) e. ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ) ) /\ y e. B ) -> ( ( 1st ` F ) ` y ) e. ( Base ` D ) ) |
| 54 | 28 | adantr | |- ( ( ph /\ ( A e. ( F N G ) /\ A. x e. B ( A ` x ) e. ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ) ) -> ( 1st ` G ) : B --> ( Base ` D ) ) |
| 55 | 54 | ffvelcdmda | |- ( ( ( ph /\ ( A e. ( F N G ) /\ A. x e. B ( A ` x ) e. ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ) ) /\ y e. B ) -> ( ( 1st ` G ) ` y ) e. ( Base ` D ) ) |
| 56 | simprr | |- ( ( ph /\ ( A e. ( F N G ) /\ A. x e. B ( A ` x ) e. ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ) ) -> A. x e. B ( A ` x ) e. ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ) |
|
| 57 | fveq2 | |- ( x = y -> ( A ` x ) = ( A ` y ) ) |
|
| 58 | fveq2 | |- ( x = y -> ( ( 1st ` F ) ` x ) = ( ( 1st ` F ) ` y ) ) |
|
| 59 | fveq2 | |- ( x = y -> ( ( 1st ` G ) ` x ) = ( ( 1st ` G ) ` y ) ) |
|
| 60 | 58 59 | oveq12d | |- ( x = y -> ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) = ( ( ( 1st ` F ) ` y ) J ( ( 1st ` G ) ` y ) ) ) |
| 61 | 57 60 | eleq12d | |- ( x = y -> ( ( A ` x ) e. ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) <-> ( A ` y ) e. ( ( ( 1st ` F ) ` y ) J ( ( 1st ` G ) ` y ) ) ) ) |
| 62 | 61 | rspccva | |- ( ( A. x e. B ( A ` x ) e. ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) /\ y e. B ) -> ( A ` y ) e. ( ( ( 1st ` F ) ` y ) J ( ( 1st ` G ) ` y ) ) ) |
| 63 | 56 62 | sylan | |- ( ( ( ph /\ ( A e. ( F N G ) /\ A. x e. B ( A ` x ) e. ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ) ) /\ y e. B ) -> ( A ` y ) e. ( ( ( 1st ` F ) ` y ) J ( ( 1st ` G ) ` y ) ) ) |
| 64 | 17 7 18 51 53 55 63 | invisoinvr | |- ( ( ( ph /\ ( A e. ( F N G ) /\ A. x e. B ( A ` x ) e. ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ) ) /\ y e. B ) -> ( A ` y ) ( ( ( 1st ` F ) ` y ) ( Inv ` D ) ( ( 1st ` G ) ` y ) ) ( ( ( ( 1st ` F ) ` y ) ( Inv ` D ) ( ( 1st ` G ) ` y ) ) ` ( A ` y ) ) ) |
| 65 | 1 2 3 48 49 31 18 50 64 | invfuc | |- ( ( ph /\ ( A e. ( F N G ) /\ A. x e. B ( A ` x ) e. ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ) ) -> A ( F ( Inv ` Q ) G ) ( y e. B |-> ( ( ( ( 1st ` F ) ` y ) ( Inv ` D ) ( ( 1st ` G ) ` y ) ) ` ( A ` y ) ) ) ) |
| 66 | 8 31 47 48 49 6 65 | inviso1 | |- ( ( ph /\ ( A e. ( F N G ) /\ A. x e. B ( A ` x ) e. ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ) ) -> A e. ( F I G ) ) |
| 67 | 46 66 | impbida | |- ( ph -> ( A e. ( F I G ) <-> ( A e. ( F N G ) /\ A. x e. B ( A ` x ) e. ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ) ) ) |