This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two natural transformations are inverses of each other iff all the components are inverse. (Contributed by Mario Carneiro, 28-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fuciso.q | |- Q = ( C FuncCat D ) |
|
| fuciso.b | |- B = ( Base ` C ) |
||
| fuciso.n | |- N = ( C Nat D ) |
||
| fuciso.f | |- ( ph -> F e. ( C Func D ) ) |
||
| fuciso.g | |- ( ph -> G e. ( C Func D ) ) |
||
| fucinv.i | |- I = ( Inv ` Q ) |
||
| fucinv.j | |- J = ( Inv ` D ) |
||
| Assertion | fucinv | |- ( ph -> ( U ( F I G ) V <-> ( U e. ( F N G ) /\ V e. ( G N F ) /\ A. x e. B ( U ` x ) ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ( V ` x ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fuciso.q | |- Q = ( C FuncCat D ) |
|
| 2 | fuciso.b | |- B = ( Base ` C ) |
|
| 3 | fuciso.n | |- N = ( C Nat D ) |
|
| 4 | fuciso.f | |- ( ph -> F e. ( C Func D ) ) |
|
| 5 | fuciso.g | |- ( ph -> G e. ( C Func D ) ) |
|
| 6 | fucinv.i | |- I = ( Inv ` Q ) |
|
| 7 | fucinv.j | |- J = ( Inv ` D ) |
|
| 8 | eqid | |- ( Sect ` Q ) = ( Sect ` Q ) |
|
| 9 | eqid | |- ( Sect ` D ) = ( Sect ` D ) |
|
| 10 | 1 2 3 4 5 8 9 | fucsect | |- ( ph -> ( U ( F ( Sect ` Q ) G ) V <-> ( U e. ( F N G ) /\ V e. ( G N F ) /\ A. x e. B ( U ` x ) ( ( ( 1st ` F ) ` x ) ( Sect ` D ) ( ( 1st ` G ) ` x ) ) ( V ` x ) ) ) ) |
| 11 | 1 2 3 5 4 8 9 | fucsect | |- ( ph -> ( V ( G ( Sect ` Q ) F ) U <-> ( V e. ( G N F ) /\ U e. ( F N G ) /\ A. x e. B ( V ` x ) ( ( ( 1st ` G ) ` x ) ( Sect ` D ) ( ( 1st ` F ) ` x ) ) ( U ` x ) ) ) ) |
| 12 | 10 11 | anbi12d | |- ( ph -> ( ( U ( F ( Sect ` Q ) G ) V /\ V ( G ( Sect ` Q ) F ) U ) <-> ( ( U e. ( F N G ) /\ V e. ( G N F ) /\ A. x e. B ( U ` x ) ( ( ( 1st ` F ) ` x ) ( Sect ` D ) ( ( 1st ` G ) ` x ) ) ( V ` x ) ) /\ ( V e. ( G N F ) /\ U e. ( F N G ) /\ A. x e. B ( V ` x ) ( ( ( 1st ` G ) ` x ) ( Sect ` D ) ( ( 1st ` F ) ` x ) ) ( U ` x ) ) ) ) ) |
| 13 | 1 | fucbas | |- ( C Func D ) = ( Base ` Q ) |
| 14 | funcrcl | |- ( F e. ( C Func D ) -> ( C e. Cat /\ D e. Cat ) ) |
|
| 15 | 4 14 | syl | |- ( ph -> ( C e. Cat /\ D e. Cat ) ) |
| 16 | 15 | simpld | |- ( ph -> C e. Cat ) |
| 17 | 15 | simprd | |- ( ph -> D e. Cat ) |
| 18 | 1 16 17 | fuccat | |- ( ph -> Q e. Cat ) |
| 19 | 13 6 18 4 5 8 | isinv | |- ( ph -> ( U ( F I G ) V <-> ( U ( F ( Sect ` Q ) G ) V /\ V ( G ( Sect ` Q ) F ) U ) ) ) |
| 20 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 21 | 17 | adantr | |- ( ( ph /\ x e. B ) -> D e. Cat ) |
| 22 | relfunc | |- Rel ( C Func D ) |
|
| 23 | 1st2ndbr | |- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
|
| 24 | 22 4 23 | sylancr | |- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 25 | 2 20 24 | funcf1 | |- ( ph -> ( 1st ` F ) : B --> ( Base ` D ) ) |
| 26 | 25 | ffvelcdmda | |- ( ( ph /\ x e. B ) -> ( ( 1st ` F ) ` x ) e. ( Base ` D ) ) |
| 27 | 1st2ndbr | |- ( ( Rel ( C Func D ) /\ G e. ( C Func D ) ) -> ( 1st ` G ) ( C Func D ) ( 2nd ` G ) ) |
|
| 28 | 22 5 27 | sylancr | |- ( ph -> ( 1st ` G ) ( C Func D ) ( 2nd ` G ) ) |
| 29 | 2 20 28 | funcf1 | |- ( ph -> ( 1st ` G ) : B --> ( Base ` D ) ) |
| 30 | 29 | ffvelcdmda | |- ( ( ph /\ x e. B ) -> ( ( 1st ` G ) ` x ) e. ( Base ` D ) ) |
| 31 | 20 7 21 26 30 9 | isinv | |- ( ( ph /\ x e. B ) -> ( ( U ` x ) ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ( V ` x ) <-> ( ( U ` x ) ( ( ( 1st ` F ) ` x ) ( Sect ` D ) ( ( 1st ` G ) ` x ) ) ( V ` x ) /\ ( V ` x ) ( ( ( 1st ` G ) ` x ) ( Sect ` D ) ( ( 1st ` F ) ` x ) ) ( U ` x ) ) ) ) |
| 32 | 31 | ralbidva | |- ( ph -> ( A. x e. B ( U ` x ) ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ( V ` x ) <-> A. x e. B ( ( U ` x ) ( ( ( 1st ` F ) ` x ) ( Sect ` D ) ( ( 1st ` G ) ` x ) ) ( V ` x ) /\ ( V ` x ) ( ( ( 1st ` G ) ` x ) ( Sect ` D ) ( ( 1st ` F ) ` x ) ) ( U ` x ) ) ) ) |
| 33 | r19.26 | |- ( A. x e. B ( ( U ` x ) ( ( ( 1st ` F ) ` x ) ( Sect ` D ) ( ( 1st ` G ) ` x ) ) ( V ` x ) /\ ( V ` x ) ( ( ( 1st ` G ) ` x ) ( Sect ` D ) ( ( 1st ` F ) ` x ) ) ( U ` x ) ) <-> ( A. x e. B ( U ` x ) ( ( ( 1st ` F ) ` x ) ( Sect ` D ) ( ( 1st ` G ) ` x ) ) ( V ` x ) /\ A. x e. B ( V ` x ) ( ( ( 1st ` G ) ` x ) ( Sect ` D ) ( ( 1st ` F ) ` x ) ) ( U ` x ) ) ) |
|
| 34 | 32 33 | bitrdi | |- ( ph -> ( A. x e. B ( U ` x ) ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ( V ` x ) <-> ( A. x e. B ( U ` x ) ( ( ( 1st ` F ) ` x ) ( Sect ` D ) ( ( 1st ` G ) ` x ) ) ( V ` x ) /\ A. x e. B ( V ` x ) ( ( ( 1st ` G ) ` x ) ( Sect ` D ) ( ( 1st ` F ) ` x ) ) ( U ` x ) ) ) ) |
| 35 | 34 | anbi2d | |- ( ph -> ( ( ( U e. ( F N G ) /\ V e. ( G N F ) ) /\ A. x e. B ( U ` x ) ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ( V ` x ) ) <-> ( ( U e. ( F N G ) /\ V e. ( G N F ) ) /\ ( A. x e. B ( U ` x ) ( ( ( 1st ` F ) ` x ) ( Sect ` D ) ( ( 1st ` G ) ` x ) ) ( V ` x ) /\ A. x e. B ( V ` x ) ( ( ( 1st ` G ) ` x ) ( Sect ` D ) ( ( 1st ` F ) ` x ) ) ( U ` x ) ) ) ) ) |
| 36 | df-3an | |- ( ( U e. ( F N G ) /\ V e. ( G N F ) /\ A. x e. B ( U ` x ) ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ( V ` x ) ) <-> ( ( U e. ( F N G ) /\ V e. ( G N F ) ) /\ A. x e. B ( U ` x ) ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ( V ` x ) ) ) |
|
| 37 | df-3an | |- ( ( U e. ( F N G ) /\ V e. ( G N F ) /\ A. x e. B ( U ` x ) ( ( ( 1st ` F ) ` x ) ( Sect ` D ) ( ( 1st ` G ) ` x ) ) ( V ` x ) ) <-> ( ( U e. ( F N G ) /\ V e. ( G N F ) ) /\ A. x e. B ( U ` x ) ( ( ( 1st ` F ) ` x ) ( Sect ` D ) ( ( 1st ` G ) ` x ) ) ( V ` x ) ) ) |
|
| 38 | 3ancoma | |- ( ( V e. ( G N F ) /\ U e. ( F N G ) /\ A. x e. B ( V ` x ) ( ( ( 1st ` G ) ` x ) ( Sect ` D ) ( ( 1st ` F ) ` x ) ) ( U ` x ) ) <-> ( U e. ( F N G ) /\ V e. ( G N F ) /\ A. x e. B ( V ` x ) ( ( ( 1st ` G ) ` x ) ( Sect ` D ) ( ( 1st ` F ) ` x ) ) ( U ` x ) ) ) |
|
| 39 | df-3an | |- ( ( U e. ( F N G ) /\ V e. ( G N F ) /\ A. x e. B ( V ` x ) ( ( ( 1st ` G ) ` x ) ( Sect ` D ) ( ( 1st ` F ) ` x ) ) ( U ` x ) ) <-> ( ( U e. ( F N G ) /\ V e. ( G N F ) ) /\ A. x e. B ( V ` x ) ( ( ( 1st ` G ) ` x ) ( Sect ` D ) ( ( 1st ` F ) ` x ) ) ( U ` x ) ) ) |
|
| 40 | 38 39 | bitri | |- ( ( V e. ( G N F ) /\ U e. ( F N G ) /\ A. x e. B ( V ` x ) ( ( ( 1st ` G ) ` x ) ( Sect ` D ) ( ( 1st ` F ) ` x ) ) ( U ` x ) ) <-> ( ( U e. ( F N G ) /\ V e. ( G N F ) ) /\ A. x e. B ( V ` x ) ( ( ( 1st ` G ) ` x ) ( Sect ` D ) ( ( 1st ` F ) ` x ) ) ( U ` x ) ) ) |
| 41 | 37 40 | anbi12i | |- ( ( ( U e. ( F N G ) /\ V e. ( G N F ) /\ A. x e. B ( U ` x ) ( ( ( 1st ` F ) ` x ) ( Sect ` D ) ( ( 1st ` G ) ` x ) ) ( V ` x ) ) /\ ( V e. ( G N F ) /\ U e. ( F N G ) /\ A. x e. B ( V ` x ) ( ( ( 1st ` G ) ` x ) ( Sect ` D ) ( ( 1st ` F ) ` x ) ) ( U ` x ) ) ) <-> ( ( ( U e. ( F N G ) /\ V e. ( G N F ) ) /\ A. x e. B ( U ` x ) ( ( ( 1st ` F ) ` x ) ( Sect ` D ) ( ( 1st ` G ) ` x ) ) ( V ` x ) ) /\ ( ( U e. ( F N G ) /\ V e. ( G N F ) ) /\ A. x e. B ( V ` x ) ( ( ( 1st ` G ) ` x ) ( Sect ` D ) ( ( 1st ` F ) ` x ) ) ( U ` x ) ) ) ) |
| 42 | anandi | |- ( ( ( U e. ( F N G ) /\ V e. ( G N F ) ) /\ ( A. x e. B ( U ` x ) ( ( ( 1st ` F ) ` x ) ( Sect ` D ) ( ( 1st ` G ) ` x ) ) ( V ` x ) /\ A. x e. B ( V ` x ) ( ( ( 1st ` G ) ` x ) ( Sect ` D ) ( ( 1st ` F ) ` x ) ) ( U ` x ) ) ) <-> ( ( ( U e. ( F N G ) /\ V e. ( G N F ) ) /\ A. x e. B ( U ` x ) ( ( ( 1st ` F ) ` x ) ( Sect ` D ) ( ( 1st ` G ) ` x ) ) ( V ` x ) ) /\ ( ( U e. ( F N G ) /\ V e. ( G N F ) ) /\ A. x e. B ( V ` x ) ( ( ( 1st ` G ) ` x ) ( Sect ` D ) ( ( 1st ` F ) ` x ) ) ( U ` x ) ) ) ) |
|
| 43 | 41 42 | bitr4i | |- ( ( ( U e. ( F N G ) /\ V e. ( G N F ) /\ A. x e. B ( U ` x ) ( ( ( 1st ` F ) ` x ) ( Sect ` D ) ( ( 1st ` G ) ` x ) ) ( V ` x ) ) /\ ( V e. ( G N F ) /\ U e. ( F N G ) /\ A. x e. B ( V ` x ) ( ( ( 1st ` G ) ` x ) ( Sect ` D ) ( ( 1st ` F ) ` x ) ) ( U ` x ) ) ) <-> ( ( U e. ( F N G ) /\ V e. ( G N F ) ) /\ ( A. x e. B ( U ` x ) ( ( ( 1st ` F ) ` x ) ( Sect ` D ) ( ( 1st ` G ) ` x ) ) ( V ` x ) /\ A. x e. B ( V ` x ) ( ( ( 1st ` G ) ` x ) ( Sect ` D ) ( ( 1st ` F ) ` x ) ) ( U ` x ) ) ) ) |
| 44 | 35 36 43 | 3bitr4g | |- ( ph -> ( ( U e. ( F N G ) /\ V e. ( G N F ) /\ A. x e. B ( U ` x ) ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ( V ` x ) ) <-> ( ( U e. ( F N G ) /\ V e. ( G N F ) /\ A. x e. B ( U ` x ) ( ( ( 1st ` F ) ` x ) ( Sect ` D ) ( ( 1st ` G ) ` x ) ) ( V ` x ) ) /\ ( V e. ( G N F ) /\ U e. ( F N G ) /\ A. x e. B ( V ` x ) ( ( ( 1st ` G ) ` x ) ( Sect ` D ) ( ( 1st ` F ) ` x ) ) ( U ` x ) ) ) ) ) |
| 45 | 12 19 44 | 3bitr4d | |- ( ph -> ( U ( F I G ) V <-> ( U e. ( F N G ) /\ V e. ( G N F ) /\ A. x e. B ( U ` x ) ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ( V ` x ) ) ) ) |