This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse relation is a relation between morphisms F : X --> Y and their inverses G : Y --> X . (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | invfval.b | |- B = ( Base ` C ) |
|
| invfval.n | |- N = ( Inv ` C ) |
||
| invfval.c | |- ( ph -> C e. Cat ) |
||
| invss.x | |- ( ph -> X e. B ) |
||
| invss.y | |- ( ph -> Y e. B ) |
||
| invss.h | |- H = ( Hom ` C ) |
||
| Assertion | invss | |- ( ph -> ( X N Y ) C_ ( ( X H Y ) X. ( Y H X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invfval.b | |- B = ( Base ` C ) |
|
| 2 | invfval.n | |- N = ( Inv ` C ) |
|
| 3 | invfval.c | |- ( ph -> C e. Cat ) |
|
| 4 | invss.x | |- ( ph -> X e. B ) |
|
| 5 | invss.y | |- ( ph -> Y e. B ) |
|
| 6 | invss.h | |- H = ( Hom ` C ) |
|
| 7 | eqid | |- ( Sect ` C ) = ( Sect ` C ) |
|
| 8 | 1 2 3 4 5 7 | invfval | |- ( ph -> ( X N Y ) = ( ( X ( Sect ` C ) Y ) i^i `' ( Y ( Sect ` C ) X ) ) ) |
| 9 | inss1 | |- ( ( X ( Sect ` C ) Y ) i^i `' ( Y ( Sect ` C ) X ) ) C_ ( X ( Sect ` C ) Y ) |
|
| 10 | 8 9 | eqsstrdi | |- ( ph -> ( X N Y ) C_ ( X ( Sect ` C ) Y ) ) |
| 11 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 12 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 13 | 1 6 11 12 7 3 4 5 | sectss | |- ( ph -> ( X ( Sect ` C ) Y ) C_ ( ( X H Y ) X. ( Y H X ) ) ) |
| 14 | 10 13 | sstrd | |- ( ph -> ( X N Y ) C_ ( ( X H Y ) X. ( Y H X ) ) ) |