This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associativity of composition in a category. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catcocl.b | |- B = ( Base ` C ) |
|
| catcocl.h | |- H = ( Hom ` C ) |
||
| catcocl.o | |- .x. = ( comp ` C ) |
||
| catcocl.c | |- ( ph -> C e. Cat ) |
||
| catcocl.x | |- ( ph -> X e. B ) |
||
| catcocl.y | |- ( ph -> Y e. B ) |
||
| catcocl.z | |- ( ph -> Z e. B ) |
||
| catcocl.f | |- ( ph -> F e. ( X H Y ) ) |
||
| catcocl.g | |- ( ph -> G e. ( Y H Z ) ) |
||
| catass.w | |- ( ph -> W e. B ) |
||
| catass.g | |- ( ph -> K e. ( Z H W ) ) |
||
| Assertion | catass | |- ( ph -> ( ( K ( <. Y , Z >. .x. W ) G ) ( <. X , Y >. .x. W ) F ) = ( K ( <. X , Z >. .x. W ) ( G ( <. X , Y >. .x. Z ) F ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catcocl.b | |- B = ( Base ` C ) |
|
| 2 | catcocl.h | |- H = ( Hom ` C ) |
|
| 3 | catcocl.o | |- .x. = ( comp ` C ) |
|
| 4 | catcocl.c | |- ( ph -> C e. Cat ) |
|
| 5 | catcocl.x | |- ( ph -> X e. B ) |
|
| 6 | catcocl.y | |- ( ph -> Y e. B ) |
|
| 7 | catcocl.z | |- ( ph -> Z e. B ) |
|
| 8 | catcocl.f | |- ( ph -> F e. ( X H Y ) ) |
|
| 9 | catcocl.g | |- ( ph -> G e. ( Y H Z ) ) |
|
| 10 | catass.w | |- ( ph -> W e. B ) |
|
| 11 | catass.g | |- ( ph -> K e. ( Z H W ) ) |
|
| 12 | 1 2 3 | iscat | |- ( C e. Cat -> ( C e. Cat <-> A. x e. B ( E. g e. ( x H x ) A. y e. B ( A. f e. ( y H x ) ( g ( <. y , x >. .x. x ) f ) = f /\ A. f e. ( x H y ) ( f ( <. x , x >. .x. y ) g ) = f ) /\ A. y e. B A. z e. B A. f e. ( x H y ) A. g e. ( y H z ) ( ( g ( <. x , y >. .x. z ) f ) e. ( x H z ) /\ A. w e. B A. k e. ( z H w ) ( ( k ( <. y , z >. .x. w ) g ) ( <. x , y >. .x. w ) f ) = ( k ( <. x , z >. .x. w ) ( g ( <. x , y >. .x. z ) f ) ) ) ) ) ) |
| 13 | 12 | ibi | |- ( C e. Cat -> A. x e. B ( E. g e. ( x H x ) A. y e. B ( A. f e. ( y H x ) ( g ( <. y , x >. .x. x ) f ) = f /\ A. f e. ( x H y ) ( f ( <. x , x >. .x. y ) g ) = f ) /\ A. y e. B A. z e. B A. f e. ( x H y ) A. g e. ( y H z ) ( ( g ( <. x , y >. .x. z ) f ) e. ( x H z ) /\ A. w e. B A. k e. ( z H w ) ( ( k ( <. y , z >. .x. w ) g ) ( <. x , y >. .x. w ) f ) = ( k ( <. x , z >. .x. w ) ( g ( <. x , y >. .x. z ) f ) ) ) ) ) |
| 14 | 4 13 | syl | |- ( ph -> A. x e. B ( E. g e. ( x H x ) A. y e. B ( A. f e. ( y H x ) ( g ( <. y , x >. .x. x ) f ) = f /\ A. f e. ( x H y ) ( f ( <. x , x >. .x. y ) g ) = f ) /\ A. y e. B A. z e. B A. f e. ( x H y ) A. g e. ( y H z ) ( ( g ( <. x , y >. .x. z ) f ) e. ( x H z ) /\ A. w e. B A. k e. ( z H w ) ( ( k ( <. y , z >. .x. w ) g ) ( <. x , y >. .x. w ) f ) = ( k ( <. x , z >. .x. w ) ( g ( <. x , y >. .x. z ) f ) ) ) ) ) |
| 15 | 6 | adantr | |- ( ( ph /\ x = X ) -> Y e. B ) |
| 16 | 7 | ad2antrr | |- ( ( ( ph /\ x = X ) /\ y = Y ) -> Z e. B ) |
| 17 | 8 | ad3antrrr | |- ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) -> F e. ( X H Y ) ) |
| 18 | simpllr | |- ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) -> x = X ) |
|
| 19 | simplr | |- ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) -> y = Y ) |
|
| 20 | 18 19 | oveq12d | |- ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) -> ( x H y ) = ( X H Y ) ) |
| 21 | 17 20 | eleqtrrd | |- ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) -> F e. ( x H y ) ) |
| 22 | 9 | ad4antr | |- ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) -> G e. ( Y H Z ) ) |
| 23 | simpllr | |- ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) -> y = Y ) |
|
| 24 | simplr | |- ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) -> z = Z ) |
|
| 25 | 23 24 | oveq12d | |- ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) -> ( y H z ) = ( Y H Z ) ) |
| 26 | 22 25 | eleqtrrd | |- ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) -> G e. ( y H z ) ) |
| 27 | 10 | ad5antr | |- ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) -> W e. B ) |
| 28 | 11 | ad6antr | |- ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) -> K e. ( Z H W ) ) |
| 29 | simp-4r | |- ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) -> z = Z ) |
|
| 30 | simpr | |- ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) -> w = W ) |
|
| 31 | 29 30 | oveq12d | |- ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) -> ( z H w ) = ( Z H W ) ) |
| 32 | 28 31 | eleqtrrd | |- ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) -> K e. ( z H w ) ) |
| 33 | simp-7r | |- ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> x = X ) |
|
| 34 | simp-6r | |- ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> y = Y ) |
|
| 35 | 33 34 | opeq12d | |- ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> <. x , y >. = <. X , Y >. ) |
| 36 | simplr | |- ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> w = W ) |
|
| 37 | 35 36 | oveq12d | |- ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> ( <. x , y >. .x. w ) = ( <. X , Y >. .x. W ) ) |
| 38 | simp-5r | |- ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> z = Z ) |
|
| 39 | 34 38 | opeq12d | |- ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> <. y , z >. = <. Y , Z >. ) |
| 40 | 39 36 | oveq12d | |- ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> ( <. y , z >. .x. w ) = ( <. Y , Z >. .x. W ) ) |
| 41 | simpr | |- ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> k = K ) |
|
| 42 | simpllr | |- ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> g = G ) |
|
| 43 | 40 41 42 | oveq123d | |- ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> ( k ( <. y , z >. .x. w ) g ) = ( K ( <. Y , Z >. .x. W ) G ) ) |
| 44 | simp-4r | |- ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> f = F ) |
|
| 45 | 37 43 44 | oveq123d | |- ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> ( ( k ( <. y , z >. .x. w ) g ) ( <. x , y >. .x. w ) f ) = ( ( K ( <. Y , Z >. .x. W ) G ) ( <. X , Y >. .x. W ) F ) ) |
| 46 | 33 38 | opeq12d | |- ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> <. x , z >. = <. X , Z >. ) |
| 47 | 46 36 | oveq12d | |- ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> ( <. x , z >. .x. w ) = ( <. X , Z >. .x. W ) ) |
| 48 | 35 38 | oveq12d | |- ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> ( <. x , y >. .x. z ) = ( <. X , Y >. .x. Z ) ) |
| 49 | 48 42 44 | oveq123d | |- ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> ( g ( <. x , y >. .x. z ) f ) = ( G ( <. X , Y >. .x. Z ) F ) ) |
| 50 | 47 41 49 | oveq123d | |- ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> ( k ( <. x , z >. .x. w ) ( g ( <. x , y >. .x. z ) f ) ) = ( K ( <. X , Z >. .x. W ) ( G ( <. X , Y >. .x. Z ) F ) ) ) |
| 51 | 45 50 | eqeq12d | |- ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> ( ( ( k ( <. y , z >. .x. w ) g ) ( <. x , y >. .x. w ) f ) = ( k ( <. x , z >. .x. w ) ( g ( <. x , y >. .x. z ) f ) ) <-> ( ( K ( <. Y , Z >. .x. W ) G ) ( <. X , Y >. .x. W ) F ) = ( K ( <. X , Z >. .x. W ) ( G ( <. X , Y >. .x. Z ) F ) ) ) ) |
| 52 | 32 51 | rspcdv | |- ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) -> ( A. k e. ( z H w ) ( ( k ( <. y , z >. .x. w ) g ) ( <. x , y >. .x. w ) f ) = ( k ( <. x , z >. .x. w ) ( g ( <. x , y >. .x. z ) f ) ) -> ( ( K ( <. Y , Z >. .x. W ) G ) ( <. X , Y >. .x. W ) F ) = ( K ( <. X , Z >. .x. W ) ( G ( <. X , Y >. .x. Z ) F ) ) ) ) |
| 53 | 27 52 | rspcimdv | |- ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) -> ( A. w e. B A. k e. ( z H w ) ( ( k ( <. y , z >. .x. w ) g ) ( <. x , y >. .x. w ) f ) = ( k ( <. x , z >. .x. w ) ( g ( <. x , y >. .x. z ) f ) ) -> ( ( K ( <. Y , Z >. .x. W ) G ) ( <. X , Y >. .x. W ) F ) = ( K ( <. X , Z >. .x. W ) ( G ( <. X , Y >. .x. Z ) F ) ) ) ) |
| 54 | 53 | adantld | |- ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) -> ( ( ( g ( <. x , y >. .x. z ) f ) e. ( x H z ) /\ A. w e. B A. k e. ( z H w ) ( ( k ( <. y , z >. .x. w ) g ) ( <. x , y >. .x. w ) f ) = ( k ( <. x , z >. .x. w ) ( g ( <. x , y >. .x. z ) f ) ) ) -> ( ( K ( <. Y , Z >. .x. W ) G ) ( <. X , Y >. .x. W ) F ) = ( K ( <. X , Z >. .x. W ) ( G ( <. X , Y >. .x. Z ) F ) ) ) ) |
| 55 | 26 54 | rspcimdv | |- ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) -> ( A. g e. ( y H z ) ( ( g ( <. x , y >. .x. z ) f ) e. ( x H z ) /\ A. w e. B A. k e. ( z H w ) ( ( k ( <. y , z >. .x. w ) g ) ( <. x , y >. .x. w ) f ) = ( k ( <. x , z >. .x. w ) ( g ( <. x , y >. .x. z ) f ) ) ) -> ( ( K ( <. Y , Z >. .x. W ) G ) ( <. X , Y >. .x. W ) F ) = ( K ( <. X , Z >. .x. W ) ( G ( <. X , Y >. .x. Z ) F ) ) ) ) |
| 56 | 21 55 | rspcimdv | |- ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) -> ( A. f e. ( x H y ) A. g e. ( y H z ) ( ( g ( <. x , y >. .x. z ) f ) e. ( x H z ) /\ A. w e. B A. k e. ( z H w ) ( ( k ( <. y , z >. .x. w ) g ) ( <. x , y >. .x. w ) f ) = ( k ( <. x , z >. .x. w ) ( g ( <. x , y >. .x. z ) f ) ) ) -> ( ( K ( <. Y , Z >. .x. W ) G ) ( <. X , Y >. .x. W ) F ) = ( K ( <. X , Z >. .x. W ) ( G ( <. X , Y >. .x. Z ) F ) ) ) ) |
| 57 | 16 56 | rspcimdv | |- ( ( ( ph /\ x = X ) /\ y = Y ) -> ( A. z e. B A. f e. ( x H y ) A. g e. ( y H z ) ( ( g ( <. x , y >. .x. z ) f ) e. ( x H z ) /\ A. w e. B A. k e. ( z H w ) ( ( k ( <. y , z >. .x. w ) g ) ( <. x , y >. .x. w ) f ) = ( k ( <. x , z >. .x. w ) ( g ( <. x , y >. .x. z ) f ) ) ) -> ( ( K ( <. Y , Z >. .x. W ) G ) ( <. X , Y >. .x. W ) F ) = ( K ( <. X , Z >. .x. W ) ( G ( <. X , Y >. .x. Z ) F ) ) ) ) |
| 58 | 15 57 | rspcimdv | |- ( ( ph /\ x = X ) -> ( A. y e. B A. z e. B A. f e. ( x H y ) A. g e. ( y H z ) ( ( g ( <. x , y >. .x. z ) f ) e. ( x H z ) /\ A. w e. B A. k e. ( z H w ) ( ( k ( <. y , z >. .x. w ) g ) ( <. x , y >. .x. w ) f ) = ( k ( <. x , z >. .x. w ) ( g ( <. x , y >. .x. z ) f ) ) ) -> ( ( K ( <. Y , Z >. .x. W ) G ) ( <. X , Y >. .x. W ) F ) = ( K ( <. X , Z >. .x. W ) ( G ( <. X , Y >. .x. Z ) F ) ) ) ) |
| 59 | 58 | adantld | |- ( ( ph /\ x = X ) -> ( ( E. g e. ( x H x ) A. y e. B ( A. f e. ( y H x ) ( g ( <. y , x >. .x. x ) f ) = f /\ A. f e. ( x H y ) ( f ( <. x , x >. .x. y ) g ) = f ) /\ A. y e. B A. z e. B A. f e. ( x H y ) A. g e. ( y H z ) ( ( g ( <. x , y >. .x. z ) f ) e. ( x H z ) /\ A. w e. B A. k e. ( z H w ) ( ( k ( <. y , z >. .x. w ) g ) ( <. x , y >. .x. w ) f ) = ( k ( <. x , z >. .x. w ) ( g ( <. x , y >. .x. z ) f ) ) ) ) -> ( ( K ( <. Y , Z >. .x. W ) G ) ( <. X , Y >. .x. W ) F ) = ( K ( <. X , Z >. .x. W ) ( G ( <. X , Y >. .x. Z ) F ) ) ) ) |
| 60 | 5 59 | rspcimdv | |- ( ph -> ( A. x e. B ( E. g e. ( x H x ) A. y e. B ( A. f e. ( y H x ) ( g ( <. y , x >. .x. x ) f ) = f /\ A. f e. ( x H y ) ( f ( <. x , x >. .x. y ) g ) = f ) /\ A. y e. B A. z e. B A. f e. ( x H y ) A. g e. ( y H z ) ( ( g ( <. x , y >. .x. z ) f ) e. ( x H z ) /\ A. w e. B A. k e. ( z H w ) ( ( k ( <. y , z >. .x. w ) g ) ( <. x , y >. .x. w ) f ) = ( k ( <. x , z >. .x. w ) ( g ( <. x , y >. .x. z ) f ) ) ) ) -> ( ( K ( <. Y , Z >. .x. W ) G ) ( <. X , Y >. .x. W ) F ) = ( K ( <. X , Z >. .x. W ) ( G ( <. X , Y >. .x. Z ) F ) ) ) ) |
| 61 | 14 60 | mpd | |- ( ph -> ( ( K ( <. Y , Z >. .x. W ) G ) ( <. X , Y >. .x. W ) F ) = ( K ( <. X , Z >. .x. W ) ( G ( <. X , Y >. .x. Z ) F ) ) ) |