This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate " F is a measurable function". A function is measurable iff the preimages of all open intervals are measurable sets in the sense of ismbl . (Contributed by Mario Carneiro, 17-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ismbf | |- ( F : A --> RR -> ( F e. MblFn <-> A. x e. ran (,) ( `' F " x ) e. dom vol ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfdm | |- ( F e. MblFn -> dom F e. dom vol ) |
|
| 2 | fdm | |- ( F : A --> RR -> dom F = A ) |
|
| 3 | 2 | eleq1d | |- ( F : A --> RR -> ( dom F e. dom vol <-> A e. dom vol ) ) |
| 4 | 1 3 | imbitrid | |- ( F : A --> RR -> ( F e. MblFn -> A e. dom vol ) ) |
| 5 | ioomax | |- ( -oo (,) +oo ) = RR |
|
| 6 | ioorebas | |- ( -oo (,) +oo ) e. ran (,) |
|
| 7 | 5 6 | eqeltrri | |- RR e. ran (,) |
| 8 | imaeq2 | |- ( x = RR -> ( `' F " x ) = ( `' F " RR ) ) |
|
| 9 | 8 | eleq1d | |- ( x = RR -> ( ( `' F " x ) e. dom vol <-> ( `' F " RR ) e. dom vol ) ) |
| 10 | 9 | rspcv | |- ( RR e. ran (,) -> ( A. x e. ran (,) ( `' F " x ) e. dom vol -> ( `' F " RR ) e. dom vol ) ) |
| 11 | 7 10 | ax-mp | |- ( A. x e. ran (,) ( `' F " x ) e. dom vol -> ( `' F " RR ) e. dom vol ) |
| 12 | fimacnv | |- ( F : A --> RR -> ( `' F " RR ) = A ) |
|
| 13 | 12 | eleq1d | |- ( F : A --> RR -> ( ( `' F " RR ) e. dom vol <-> A e. dom vol ) ) |
| 14 | 11 13 | imbitrid | |- ( F : A --> RR -> ( A. x e. ran (,) ( `' F " x ) e. dom vol -> A e. dom vol ) ) |
| 15 | ismbf1 | |- ( F e. MblFn <-> ( F e. ( CC ^pm RR ) /\ A. x e. ran (,) ( ( `' ( Re o. F ) " x ) e. dom vol /\ ( `' ( Im o. F ) " x ) e. dom vol ) ) ) |
|
| 16 | ffvelcdm | |- ( ( F : A --> RR /\ x e. A ) -> ( F ` x ) e. RR ) |
|
| 17 | 16 | adantlr | |- ( ( ( F : A --> RR /\ A e. dom vol ) /\ x e. A ) -> ( F ` x ) e. RR ) |
| 18 | 17 | rered | |- ( ( ( F : A --> RR /\ A e. dom vol ) /\ x e. A ) -> ( Re ` ( F ` x ) ) = ( F ` x ) ) |
| 19 | 18 | mpteq2dva | |- ( ( F : A --> RR /\ A e. dom vol ) -> ( x e. A |-> ( Re ` ( F ` x ) ) ) = ( x e. A |-> ( F ` x ) ) ) |
| 20 | 17 | recnd | |- ( ( ( F : A --> RR /\ A e. dom vol ) /\ x e. A ) -> ( F ` x ) e. CC ) |
| 21 | simpl | |- ( ( F : A --> RR /\ A e. dom vol ) -> F : A --> RR ) |
|
| 22 | 21 | feqmptd | |- ( ( F : A --> RR /\ A e. dom vol ) -> F = ( x e. A |-> ( F ` x ) ) ) |
| 23 | ref | |- Re : CC --> RR |
|
| 24 | 23 | a1i | |- ( ( F : A --> RR /\ A e. dom vol ) -> Re : CC --> RR ) |
| 25 | 24 | feqmptd | |- ( ( F : A --> RR /\ A e. dom vol ) -> Re = ( y e. CC |-> ( Re ` y ) ) ) |
| 26 | fveq2 | |- ( y = ( F ` x ) -> ( Re ` y ) = ( Re ` ( F ` x ) ) ) |
|
| 27 | 20 22 25 26 | fmptco | |- ( ( F : A --> RR /\ A e. dom vol ) -> ( Re o. F ) = ( x e. A |-> ( Re ` ( F ` x ) ) ) ) |
| 28 | 19 27 22 | 3eqtr4rd | |- ( ( F : A --> RR /\ A e. dom vol ) -> F = ( Re o. F ) ) |
| 29 | 28 | cnveqd | |- ( ( F : A --> RR /\ A e. dom vol ) -> `' F = `' ( Re o. F ) ) |
| 30 | 29 | imaeq1d | |- ( ( F : A --> RR /\ A e. dom vol ) -> ( `' F " x ) = ( `' ( Re o. F ) " x ) ) |
| 31 | 30 | eleq1d | |- ( ( F : A --> RR /\ A e. dom vol ) -> ( ( `' F " x ) e. dom vol <-> ( `' ( Re o. F ) " x ) e. dom vol ) ) |
| 32 | imf | |- Im : CC --> RR |
|
| 33 | 32 | a1i | |- ( ( F : A --> RR /\ A e. dom vol ) -> Im : CC --> RR ) |
| 34 | 33 | feqmptd | |- ( ( F : A --> RR /\ A e. dom vol ) -> Im = ( y e. CC |-> ( Im ` y ) ) ) |
| 35 | fveq2 | |- ( y = ( F ` x ) -> ( Im ` y ) = ( Im ` ( F ` x ) ) ) |
|
| 36 | 20 22 34 35 | fmptco | |- ( ( F : A --> RR /\ A e. dom vol ) -> ( Im o. F ) = ( x e. A |-> ( Im ` ( F ` x ) ) ) ) |
| 37 | 17 | reim0d | |- ( ( ( F : A --> RR /\ A e. dom vol ) /\ x e. A ) -> ( Im ` ( F ` x ) ) = 0 ) |
| 38 | 37 | mpteq2dva | |- ( ( F : A --> RR /\ A e. dom vol ) -> ( x e. A |-> ( Im ` ( F ` x ) ) ) = ( x e. A |-> 0 ) ) |
| 39 | 36 38 | eqtrd | |- ( ( F : A --> RR /\ A e. dom vol ) -> ( Im o. F ) = ( x e. A |-> 0 ) ) |
| 40 | fconstmpt | |- ( A X. { 0 } ) = ( x e. A |-> 0 ) |
|
| 41 | 39 40 | eqtr4di | |- ( ( F : A --> RR /\ A e. dom vol ) -> ( Im o. F ) = ( A X. { 0 } ) ) |
| 42 | 41 | cnveqd | |- ( ( F : A --> RR /\ A e. dom vol ) -> `' ( Im o. F ) = `' ( A X. { 0 } ) ) |
| 43 | 42 | imaeq1d | |- ( ( F : A --> RR /\ A e. dom vol ) -> ( `' ( Im o. F ) " x ) = ( `' ( A X. { 0 } ) " x ) ) |
| 44 | simpr | |- ( ( F : A --> RR /\ A e. dom vol ) -> A e. dom vol ) |
|
| 45 | 0re | |- 0 e. RR |
|
| 46 | mbfconstlem | |- ( ( A e. dom vol /\ 0 e. RR ) -> ( `' ( A X. { 0 } ) " x ) e. dom vol ) |
|
| 47 | 44 45 46 | sylancl | |- ( ( F : A --> RR /\ A e. dom vol ) -> ( `' ( A X. { 0 } ) " x ) e. dom vol ) |
| 48 | 43 47 | eqeltrd | |- ( ( F : A --> RR /\ A e. dom vol ) -> ( `' ( Im o. F ) " x ) e. dom vol ) |
| 49 | 48 | biantrud | |- ( ( F : A --> RR /\ A e. dom vol ) -> ( ( `' ( Re o. F ) " x ) e. dom vol <-> ( ( `' ( Re o. F ) " x ) e. dom vol /\ ( `' ( Im o. F ) " x ) e. dom vol ) ) ) |
| 50 | 31 49 | bitrd | |- ( ( F : A --> RR /\ A e. dom vol ) -> ( ( `' F " x ) e. dom vol <-> ( ( `' ( Re o. F ) " x ) e. dom vol /\ ( `' ( Im o. F ) " x ) e. dom vol ) ) ) |
| 51 | 50 | ralbidv | |- ( ( F : A --> RR /\ A e. dom vol ) -> ( A. x e. ran (,) ( `' F " x ) e. dom vol <-> A. x e. ran (,) ( ( `' ( Re o. F ) " x ) e. dom vol /\ ( `' ( Im o. F ) " x ) e. dom vol ) ) ) |
| 52 | ax-resscn | |- RR C_ CC |
|
| 53 | fss | |- ( ( F : A --> RR /\ RR C_ CC ) -> F : A --> CC ) |
|
| 54 | 52 53 | mpan2 | |- ( F : A --> RR -> F : A --> CC ) |
| 55 | mblss | |- ( A e. dom vol -> A C_ RR ) |
|
| 56 | cnex | |- CC e. _V |
|
| 57 | reex | |- RR e. _V |
|
| 58 | elpm2r | |- ( ( ( CC e. _V /\ RR e. _V ) /\ ( F : A --> CC /\ A C_ RR ) ) -> F e. ( CC ^pm RR ) ) |
|
| 59 | 56 57 58 | mpanl12 | |- ( ( F : A --> CC /\ A C_ RR ) -> F e. ( CC ^pm RR ) ) |
| 60 | 54 55 59 | syl2an | |- ( ( F : A --> RR /\ A e. dom vol ) -> F e. ( CC ^pm RR ) ) |
| 61 | 60 | biantrurd | |- ( ( F : A --> RR /\ A e. dom vol ) -> ( A. x e. ran (,) ( ( `' ( Re o. F ) " x ) e. dom vol /\ ( `' ( Im o. F ) " x ) e. dom vol ) <-> ( F e. ( CC ^pm RR ) /\ A. x e. ran (,) ( ( `' ( Re o. F ) " x ) e. dom vol /\ ( `' ( Im o. F ) " x ) e. dom vol ) ) ) ) |
| 62 | 51 61 | bitrd | |- ( ( F : A --> RR /\ A e. dom vol ) -> ( A. x e. ran (,) ( `' F " x ) e. dom vol <-> ( F e. ( CC ^pm RR ) /\ A. x e. ran (,) ( ( `' ( Re o. F ) " x ) e. dom vol /\ ( `' ( Im o. F ) " x ) e. dom vol ) ) ) ) |
| 63 | 15 62 | bitr4id | |- ( ( F : A --> RR /\ A e. dom vol ) -> ( F e. MblFn <-> A. x e. ran (,) ( `' F " x ) e. dom vol ) ) |
| 64 | 63 | ex | |- ( F : A --> RR -> ( A e. dom vol -> ( F e. MblFn <-> A. x e. ran (,) ( `' F " x ) e. dom vol ) ) ) |
| 65 | 4 14 64 | pm5.21ndd | |- ( F : A --> RR -> ( F e. MblFn <-> A. x e. ran (,) ( `' F " x ) e. dom vol ) ) |