This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying that two classes are disjoint, using the complement of B relative to a universe C . (Contributed by NM, 15-Feb-2007) (Proof shortened by Andrew Salmon, 26-Jun-2011) Avoid ax-12 . (Revised by GG, 28-Jun-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reldisj | |- ( A C_ C -> ( ( A i^i B ) = (/) <-> A C_ ( C \ B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ss | |- ( A C_ C <-> A. x ( x e. A -> x e. C ) ) |
|
| 2 | eleq1w | |- ( x = y -> ( x e. A <-> y e. A ) ) |
|
| 3 | eleq1w | |- ( x = y -> ( x e. C <-> y e. C ) ) |
|
| 4 | 2 3 | imbi12d | |- ( x = y -> ( ( x e. A -> x e. C ) <-> ( y e. A -> y e. C ) ) ) |
| 5 | 4 | spw | |- ( A. x ( x e. A -> x e. C ) -> ( x e. A -> x e. C ) ) |
| 6 | pm5.44 | |- ( ( x e. A -> x e. C ) -> ( ( x e. A -> -. x e. B ) <-> ( x e. A -> ( x e. C /\ -. x e. B ) ) ) ) |
|
| 7 | eldif | |- ( x e. ( C \ B ) <-> ( x e. C /\ -. x e. B ) ) |
|
| 8 | 7 | imbi2i | |- ( ( x e. A -> x e. ( C \ B ) ) <-> ( x e. A -> ( x e. C /\ -. x e. B ) ) ) |
| 9 | 6 8 | bitr4di | |- ( ( x e. A -> x e. C ) -> ( ( x e. A -> -. x e. B ) <-> ( x e. A -> x e. ( C \ B ) ) ) ) |
| 10 | 5 9 | syl | |- ( A. x ( x e. A -> x e. C ) -> ( ( x e. A -> -. x e. B ) <-> ( x e. A -> x e. ( C \ B ) ) ) ) |
| 11 | 1 10 | sylbi | |- ( A C_ C -> ( ( x e. A -> -. x e. B ) <-> ( x e. A -> x e. ( C \ B ) ) ) ) |
| 12 | 11 | albidv | |- ( A C_ C -> ( A. x ( x e. A -> -. x e. B ) <-> A. x ( x e. A -> x e. ( C \ B ) ) ) ) |
| 13 | disj1 | |- ( ( A i^i B ) = (/) <-> A. x ( x e. A -> -. x e. B ) ) |
|
| 14 | df-ss | |- ( A C_ ( C \ B ) <-> A. x ( x e. A -> x e. ( C \ B ) ) ) |
|
| 15 | 12 13 14 | 3bitr4g | |- ( A C_ C -> ( ( A i^i B ) = (/) <-> A C_ ( C \ B ) ) ) |