This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subclass defined in terms of class difference. See comments under dfun2 . (Contributed by NM, 22-Mar-1998) (Proof shortened by Andrew Salmon, 26-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfss4 | |- ( A C_ B <-> ( B \ ( B \ A ) ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqin2 | |- ( A C_ B <-> ( B i^i A ) = A ) |
|
| 2 | eldif | |- ( x e. ( B \ A ) <-> ( x e. B /\ -. x e. A ) ) |
|
| 3 | 2 | notbii | |- ( -. x e. ( B \ A ) <-> -. ( x e. B /\ -. x e. A ) ) |
| 4 | 3 | anbi2i | |- ( ( x e. B /\ -. x e. ( B \ A ) ) <-> ( x e. B /\ -. ( x e. B /\ -. x e. A ) ) ) |
| 5 | elin | |- ( x e. ( B i^i A ) <-> ( x e. B /\ x e. A ) ) |
|
| 6 | abai | |- ( ( x e. B /\ x e. A ) <-> ( x e. B /\ ( x e. B -> x e. A ) ) ) |
|
| 7 | iman | |- ( ( x e. B -> x e. A ) <-> -. ( x e. B /\ -. x e. A ) ) |
|
| 8 | 7 | anbi2i | |- ( ( x e. B /\ ( x e. B -> x e. A ) ) <-> ( x e. B /\ -. ( x e. B /\ -. x e. A ) ) ) |
| 9 | 5 6 8 | 3bitri | |- ( x e. ( B i^i A ) <-> ( x e. B /\ -. ( x e. B /\ -. x e. A ) ) ) |
| 10 | 4 9 | bitr4i | |- ( ( x e. B /\ -. x e. ( B \ A ) ) <-> x e. ( B i^i A ) ) |
| 11 | 10 | difeqri | |- ( B \ ( B \ A ) ) = ( B i^i A ) |
| 12 | 11 | eqeq1i | |- ( ( B \ ( B \ A ) ) = A <-> ( B i^i A ) = A ) |
| 13 | 1 12 | bitr4i | |- ( A C_ B <-> ( B \ ( B \ A ) ) = A ) |