This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate " F is a simple function". A simple function is a finite nonnegative linear combination of indicator functions for finitely measurable sets. We use the idiom F e. dom S.1 to represent this concept because S.1 is the first preparation function for our final definition S. (see df-itg ); unlike that operator, which can integrate any function, this operator can only integrate simple functions. (Contributed by Mario Carneiro, 18-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isi1f | |- ( F e. dom S.1 <-> ( F e. MblFn /\ ( F : RR --> RR /\ ran F e. Fin /\ ( vol ` ( `' F " ( RR \ { 0 } ) ) ) e. RR ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq1 | |- ( g = F -> ( g : RR --> RR <-> F : RR --> RR ) ) |
|
| 2 | rneq | |- ( g = F -> ran g = ran F ) |
|
| 3 | 2 | eleq1d | |- ( g = F -> ( ran g e. Fin <-> ran F e. Fin ) ) |
| 4 | cnveq | |- ( g = F -> `' g = `' F ) |
|
| 5 | 4 | imaeq1d | |- ( g = F -> ( `' g " ( RR \ { 0 } ) ) = ( `' F " ( RR \ { 0 } ) ) ) |
| 6 | 5 | fveq2d | |- ( g = F -> ( vol ` ( `' g " ( RR \ { 0 } ) ) ) = ( vol ` ( `' F " ( RR \ { 0 } ) ) ) ) |
| 7 | 6 | eleq1d | |- ( g = F -> ( ( vol ` ( `' g " ( RR \ { 0 } ) ) ) e. RR <-> ( vol ` ( `' F " ( RR \ { 0 } ) ) ) e. RR ) ) |
| 8 | 1 3 7 | 3anbi123d | |- ( g = F -> ( ( g : RR --> RR /\ ran g e. Fin /\ ( vol ` ( `' g " ( RR \ { 0 } ) ) ) e. RR ) <-> ( F : RR --> RR /\ ran F e. Fin /\ ( vol ` ( `' F " ( RR \ { 0 } ) ) ) e. RR ) ) ) |
| 9 | sumex | |- sum_ x e. ( ran f \ { 0 } ) ( x x. ( vol ` ( `' f " { x } ) ) ) e. _V |
|
| 10 | df-itg1 | |- S.1 = ( f e. { g e. MblFn | ( g : RR --> RR /\ ran g e. Fin /\ ( vol ` ( `' g " ( RR \ { 0 } ) ) ) e. RR ) } |-> sum_ x e. ( ran f \ { 0 } ) ( x x. ( vol ` ( `' f " { x } ) ) ) ) |
|
| 11 | 9 10 | dmmpti | |- dom S.1 = { g e. MblFn | ( g : RR --> RR /\ ran g e. Fin /\ ( vol ` ( `' g " ( RR \ { 0 } ) ) ) e. RR ) } |
| 12 | 8 11 | elrab2 | |- ( F e. dom S.1 <-> ( F e. MblFn /\ ( F : RR --> RR /\ ran F e. Fin /\ ( vol ` ( `' F " ( RR \ { 0 } ) ) ) e. RR ) ) ) |