This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for hhssabloi . Formerly part of proof for hhssabloi which was based on the deprecated definition "SubGrpOp" for subgroups. (Contributed by NM, 9-Apr-2008) (Revised by Mario Carneiro, 23-Dec-2013) (Revised by AV, 27-Aug-2021) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hhssabl.1 | |- H e. SH |
|
| Assertion | hhssabloilem | |- ( +h e. GrpOp /\ ( +h |` ( H X. H ) ) e. GrpOp /\ ( +h |` ( H X. H ) ) C_ +h ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhssabl.1 | |- H e. SH |
|
| 2 | hilablo | |- +h e. AbelOp |
|
| 3 | ablogrpo | |- ( +h e. AbelOp -> +h e. GrpOp ) |
|
| 4 | 2 3 | ax-mp | |- +h e. GrpOp |
| 5 | 1 | elexi | |- H e. _V |
| 6 | eqid | |- ran +h = ran +h |
|
| 7 | 6 | grpofo | |- ( +h e. GrpOp -> +h : ( ran +h X. ran +h ) -onto-> ran +h ) |
| 8 | fof | |- ( +h : ( ran +h X. ran +h ) -onto-> ran +h -> +h : ( ran +h X. ran +h ) --> ran +h ) |
|
| 9 | 4 7 8 | mp2b | |- +h : ( ran +h X. ran +h ) --> ran +h |
| 10 | 1 | shssii | |- H C_ ~H |
| 11 | df-hba | |- ~H = ( BaseSet ` <. <. +h , .h >. , normh >. ) |
|
| 12 | eqid | |- <. <. +h , .h >. , normh >. = <. <. +h , .h >. , normh >. |
|
| 13 | 12 | hhva | |- +h = ( +v ` <. <. +h , .h >. , normh >. ) |
| 14 | 11 13 | bafval | |- ~H = ran +h |
| 15 | 10 14 | sseqtri | |- H C_ ran +h |
| 16 | xpss12 | |- ( ( H C_ ran +h /\ H C_ ran +h ) -> ( H X. H ) C_ ( ran +h X. ran +h ) ) |
|
| 17 | 15 15 16 | mp2an | |- ( H X. H ) C_ ( ran +h X. ran +h ) |
| 18 | fssres | |- ( ( +h : ( ran +h X. ran +h ) --> ran +h /\ ( H X. H ) C_ ( ran +h X. ran +h ) ) -> ( +h |` ( H X. H ) ) : ( H X. H ) --> ran +h ) |
|
| 19 | 9 17 18 | mp2an | |- ( +h |` ( H X. H ) ) : ( H X. H ) --> ran +h |
| 20 | ffn | |- ( ( +h |` ( H X. H ) ) : ( H X. H ) --> ran +h -> ( +h |` ( H X. H ) ) Fn ( H X. H ) ) |
|
| 21 | 19 20 | ax-mp | |- ( +h |` ( H X. H ) ) Fn ( H X. H ) |
| 22 | ovres | |- ( ( x e. H /\ y e. H ) -> ( x ( +h |` ( H X. H ) ) y ) = ( x +h y ) ) |
|
| 23 | shaddcl | |- ( ( H e. SH /\ x e. H /\ y e. H ) -> ( x +h y ) e. H ) |
|
| 24 | 1 23 | mp3an1 | |- ( ( x e. H /\ y e. H ) -> ( x +h y ) e. H ) |
| 25 | 22 24 | eqeltrd | |- ( ( x e. H /\ y e. H ) -> ( x ( +h |` ( H X. H ) ) y ) e. H ) |
| 26 | 25 | rgen2 | |- A. x e. H A. y e. H ( x ( +h |` ( H X. H ) ) y ) e. H |
| 27 | ffnov | |- ( ( +h |` ( H X. H ) ) : ( H X. H ) --> H <-> ( ( +h |` ( H X. H ) ) Fn ( H X. H ) /\ A. x e. H A. y e. H ( x ( +h |` ( H X. H ) ) y ) e. H ) ) |
|
| 28 | 21 26 27 | mpbir2an | |- ( +h |` ( H X. H ) ) : ( H X. H ) --> H |
| 29 | 22 | oveq1d | |- ( ( x e. H /\ y e. H ) -> ( ( x ( +h |` ( H X. H ) ) y ) +h z ) = ( ( x +h y ) +h z ) ) |
| 30 | 29 | 3adant3 | |- ( ( x e. H /\ y e. H /\ z e. H ) -> ( ( x ( +h |` ( H X. H ) ) y ) +h z ) = ( ( x +h y ) +h z ) ) |
| 31 | ovres | |- ( ( ( x ( +h |` ( H X. H ) ) y ) e. H /\ z e. H ) -> ( ( x ( +h |` ( H X. H ) ) y ) ( +h |` ( H X. H ) ) z ) = ( ( x ( +h |` ( H X. H ) ) y ) +h z ) ) |
|
| 32 | 25 31 | stoic3 | |- ( ( x e. H /\ y e. H /\ z e. H ) -> ( ( x ( +h |` ( H X. H ) ) y ) ( +h |` ( H X. H ) ) z ) = ( ( x ( +h |` ( H X. H ) ) y ) +h z ) ) |
| 33 | ovres | |- ( ( y e. H /\ z e. H ) -> ( y ( +h |` ( H X. H ) ) z ) = ( y +h z ) ) |
|
| 34 | 33 | oveq2d | |- ( ( y e. H /\ z e. H ) -> ( x +h ( y ( +h |` ( H X. H ) ) z ) ) = ( x +h ( y +h z ) ) ) |
| 35 | 34 | 3adant1 | |- ( ( x e. H /\ y e. H /\ z e. H ) -> ( x +h ( y ( +h |` ( H X. H ) ) z ) ) = ( x +h ( y +h z ) ) ) |
| 36 | 28 | fovcl | |- ( ( y e. H /\ z e. H ) -> ( y ( +h |` ( H X. H ) ) z ) e. H ) |
| 37 | ovres | |- ( ( x e. H /\ ( y ( +h |` ( H X. H ) ) z ) e. H ) -> ( x ( +h |` ( H X. H ) ) ( y ( +h |` ( H X. H ) ) z ) ) = ( x +h ( y ( +h |` ( H X. H ) ) z ) ) ) |
|
| 38 | 36 37 | sylan2 | |- ( ( x e. H /\ ( y e. H /\ z e. H ) ) -> ( x ( +h |` ( H X. H ) ) ( y ( +h |` ( H X. H ) ) z ) ) = ( x +h ( y ( +h |` ( H X. H ) ) z ) ) ) |
| 39 | 38 | 3impb | |- ( ( x e. H /\ y e. H /\ z e. H ) -> ( x ( +h |` ( H X. H ) ) ( y ( +h |` ( H X. H ) ) z ) ) = ( x +h ( y ( +h |` ( H X. H ) ) z ) ) ) |
| 40 | 15 | sseli | |- ( x e. H -> x e. ran +h ) |
| 41 | 15 | sseli | |- ( y e. H -> y e. ran +h ) |
| 42 | 15 | sseli | |- ( z e. H -> z e. ran +h ) |
| 43 | 6 | grpoass | |- ( ( +h e. GrpOp /\ ( x e. ran +h /\ y e. ran +h /\ z e. ran +h ) ) -> ( ( x +h y ) +h z ) = ( x +h ( y +h z ) ) ) |
| 44 | 4 43 | mpan | |- ( ( x e. ran +h /\ y e. ran +h /\ z e. ran +h ) -> ( ( x +h y ) +h z ) = ( x +h ( y +h z ) ) ) |
| 45 | 40 41 42 44 | syl3an | |- ( ( x e. H /\ y e. H /\ z e. H ) -> ( ( x +h y ) +h z ) = ( x +h ( y +h z ) ) ) |
| 46 | 35 39 45 | 3eqtr4d | |- ( ( x e. H /\ y e. H /\ z e. H ) -> ( x ( +h |` ( H X. H ) ) ( y ( +h |` ( H X. H ) ) z ) ) = ( ( x +h y ) +h z ) ) |
| 47 | 30 32 46 | 3eqtr4d | |- ( ( x e. H /\ y e. H /\ z e. H ) -> ( ( x ( +h |` ( H X. H ) ) y ) ( +h |` ( H X. H ) ) z ) = ( x ( +h |` ( H X. H ) ) ( y ( +h |` ( H X. H ) ) z ) ) ) |
| 48 | hilid | |- ( GId ` +h ) = 0h |
|
| 49 | sh0 | |- ( H e. SH -> 0h e. H ) |
|
| 50 | 1 49 | ax-mp | |- 0h e. H |
| 51 | 48 50 | eqeltri | |- ( GId ` +h ) e. H |
| 52 | ovres | |- ( ( ( GId ` +h ) e. H /\ x e. H ) -> ( ( GId ` +h ) ( +h |` ( H X. H ) ) x ) = ( ( GId ` +h ) +h x ) ) |
|
| 53 | 51 52 | mpan | |- ( x e. H -> ( ( GId ` +h ) ( +h |` ( H X. H ) ) x ) = ( ( GId ` +h ) +h x ) ) |
| 54 | eqid | |- ( GId ` +h ) = ( GId ` +h ) |
|
| 55 | 6 54 | grpolid | |- ( ( +h e. GrpOp /\ x e. ran +h ) -> ( ( GId ` +h ) +h x ) = x ) |
| 56 | 4 40 55 | sylancr | |- ( x e. H -> ( ( GId ` +h ) +h x ) = x ) |
| 57 | 53 56 | eqtrd | |- ( x e. H -> ( ( GId ` +h ) ( +h |` ( H X. H ) ) x ) = x ) |
| 58 | 12 | hhnv | |- <. <. +h , .h >. , normh >. e. NrmCVec |
| 59 | 12 | hhsm | |- .h = ( .sOLD ` <. <. +h , .h >. , normh >. ) |
| 60 | eqid | |- ( .h o. `' ( 2nd |` ( { -u 1 } X. _V ) ) ) = ( .h o. `' ( 2nd |` ( { -u 1 } X. _V ) ) ) |
|
| 61 | 13 59 60 | nvinvfval | |- ( <. <. +h , .h >. , normh >. e. NrmCVec -> ( .h o. `' ( 2nd |` ( { -u 1 } X. _V ) ) ) = ( inv ` +h ) ) |
| 62 | 58 61 | ax-mp | |- ( .h o. `' ( 2nd |` ( { -u 1 } X. _V ) ) ) = ( inv ` +h ) |
| 63 | 62 | eqcomi | |- ( inv ` +h ) = ( .h o. `' ( 2nd |` ( { -u 1 } X. _V ) ) ) |
| 64 | 63 | fveq1i | |- ( ( inv ` +h ) ` x ) = ( ( .h o. `' ( 2nd |` ( { -u 1 } X. _V ) ) ) ` x ) |
| 65 | ax-hfvmul | |- .h : ( CC X. ~H ) --> ~H |
|
| 66 | ffn | |- ( .h : ( CC X. ~H ) --> ~H -> .h Fn ( CC X. ~H ) ) |
|
| 67 | 65 66 | ax-mp | |- .h Fn ( CC X. ~H ) |
| 68 | neg1cn | |- -u 1 e. CC |
|
| 69 | 60 | curry1val | |- ( ( .h Fn ( CC X. ~H ) /\ -u 1 e. CC ) -> ( ( .h o. `' ( 2nd |` ( { -u 1 } X. _V ) ) ) ` x ) = ( -u 1 .h x ) ) |
| 70 | 67 68 69 | mp2an | |- ( ( .h o. `' ( 2nd |` ( { -u 1 } X. _V ) ) ) ` x ) = ( -u 1 .h x ) |
| 71 | shmulcl | |- ( ( H e. SH /\ -u 1 e. CC /\ x e. H ) -> ( -u 1 .h x ) e. H ) |
|
| 72 | 1 68 71 | mp3an12 | |- ( x e. H -> ( -u 1 .h x ) e. H ) |
| 73 | 70 72 | eqeltrid | |- ( x e. H -> ( ( .h o. `' ( 2nd |` ( { -u 1 } X. _V ) ) ) ` x ) e. H ) |
| 74 | 64 73 | eqeltrid | |- ( x e. H -> ( ( inv ` +h ) ` x ) e. H ) |
| 75 | ovres | |- ( ( ( ( inv ` +h ) ` x ) e. H /\ x e. H ) -> ( ( ( inv ` +h ) ` x ) ( +h |` ( H X. H ) ) x ) = ( ( ( inv ` +h ) ` x ) +h x ) ) |
|
| 76 | 74 75 | mpancom | |- ( x e. H -> ( ( ( inv ` +h ) ` x ) ( +h |` ( H X. H ) ) x ) = ( ( ( inv ` +h ) ` x ) +h x ) ) |
| 77 | eqid | |- ( inv ` +h ) = ( inv ` +h ) |
|
| 78 | 6 54 77 | grpolinv | |- ( ( +h e. GrpOp /\ x e. ran +h ) -> ( ( ( inv ` +h ) ` x ) +h x ) = ( GId ` +h ) ) |
| 79 | 4 40 78 | sylancr | |- ( x e. H -> ( ( ( inv ` +h ) ` x ) +h x ) = ( GId ` +h ) ) |
| 80 | 76 79 | eqtrd | |- ( x e. H -> ( ( ( inv ` +h ) ` x ) ( +h |` ( H X. H ) ) x ) = ( GId ` +h ) ) |
| 81 | 5 28 47 51 57 74 80 | isgrpoi | |- ( +h |` ( H X. H ) ) e. GrpOp |
| 82 | resss | |- ( +h |` ( H X. H ) ) C_ +h |
|
| 83 | 4 81 82 | 3pm3.2i | |- ( +h e. GrpOp /\ ( +h |` ( H X. H ) ) e. GrpOp /\ ( +h |` ( H X. H ) ) C_ +h ) |