This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function for the negative of a vector on a normed complex vector space, in terms of the underlying addition group inverse. (We currently do not have a separate notation for the negative of a vector.) (Contributed by NM, 27-Mar-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvinvfval.2 | |- G = ( +v ` U ) |
|
| nvinvfval.4 | |- S = ( .sOLD ` U ) |
||
| nvinvfval.3 | |- N = ( S o. `' ( 2nd |` ( { -u 1 } X. _V ) ) ) |
||
| Assertion | nvinvfval | |- ( U e. NrmCVec -> N = ( inv ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvinvfval.2 | |- G = ( +v ` U ) |
|
| 2 | nvinvfval.4 | |- S = ( .sOLD ` U ) |
|
| 3 | nvinvfval.3 | |- N = ( S o. `' ( 2nd |` ( { -u 1 } X. _V ) ) ) |
|
| 4 | eqid | |- ( BaseSet ` U ) = ( BaseSet ` U ) |
|
| 5 | 4 2 | nvsf | |- ( U e. NrmCVec -> S : ( CC X. ( BaseSet ` U ) ) --> ( BaseSet ` U ) ) |
| 6 | neg1cn | |- -u 1 e. CC |
|
| 7 | 3 | curry1f | |- ( ( S : ( CC X. ( BaseSet ` U ) ) --> ( BaseSet ` U ) /\ -u 1 e. CC ) -> N : ( BaseSet ` U ) --> ( BaseSet ` U ) ) |
| 8 | 5 6 7 | sylancl | |- ( U e. NrmCVec -> N : ( BaseSet ` U ) --> ( BaseSet ` U ) ) |
| 9 | 8 | ffnd | |- ( U e. NrmCVec -> N Fn ( BaseSet ` U ) ) |
| 10 | 1 | nvgrp | |- ( U e. NrmCVec -> G e. GrpOp ) |
| 11 | 4 1 | bafval | |- ( BaseSet ` U ) = ran G |
| 12 | eqid | |- ( inv ` G ) = ( inv ` G ) |
|
| 13 | 11 12 | grpoinvf | |- ( G e. GrpOp -> ( inv ` G ) : ( BaseSet ` U ) -1-1-onto-> ( BaseSet ` U ) ) |
| 14 | f1ofn | |- ( ( inv ` G ) : ( BaseSet ` U ) -1-1-onto-> ( BaseSet ` U ) -> ( inv ` G ) Fn ( BaseSet ` U ) ) |
|
| 15 | 10 13 14 | 3syl | |- ( U e. NrmCVec -> ( inv ` G ) Fn ( BaseSet ` U ) ) |
| 16 | 5 | ffnd | |- ( U e. NrmCVec -> S Fn ( CC X. ( BaseSet ` U ) ) ) |
| 17 | 16 | adantr | |- ( ( U e. NrmCVec /\ x e. ( BaseSet ` U ) ) -> S Fn ( CC X. ( BaseSet ` U ) ) ) |
| 18 | 3 | curry1val | |- ( ( S Fn ( CC X. ( BaseSet ` U ) ) /\ -u 1 e. CC ) -> ( N ` x ) = ( -u 1 S x ) ) |
| 19 | 17 6 18 | sylancl | |- ( ( U e. NrmCVec /\ x e. ( BaseSet ` U ) ) -> ( N ` x ) = ( -u 1 S x ) ) |
| 20 | 4 1 2 12 | nvinv | |- ( ( U e. NrmCVec /\ x e. ( BaseSet ` U ) ) -> ( -u 1 S x ) = ( ( inv ` G ) ` x ) ) |
| 21 | 19 20 | eqtrd | |- ( ( U e. NrmCVec /\ x e. ( BaseSet ` U ) ) -> ( N ` x ) = ( ( inv ` G ) ` x ) ) |
| 22 | 9 15 21 | eqfnfvd | |- ( U e. NrmCVec -> N = ( inv ` G ) ) |