This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group identity element of Hilbert space vector addition is the zero vector. (Contributed by NM, 16-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hilid | |- ( GId ` +h ) = 0h |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hilablo | |- +h e. AbelOp |
|
| 2 | ablogrpo | |- ( +h e. AbelOp -> +h e. GrpOp ) |
|
| 3 | 1 2 | ax-mp | |- +h e. GrpOp |
| 4 | ax-hfvadd | |- +h : ( ~H X. ~H ) --> ~H |
|
| 5 | 4 | fdmi | |- dom +h = ( ~H X. ~H ) |
| 6 | 3 5 | grporn | |- ~H = ran +h |
| 7 | eqid | |- ( GId ` +h ) = ( GId ` +h ) |
|
| 8 | 6 7 | grpoidval | |- ( +h e. GrpOp -> ( GId ` +h ) = ( iota_ y e. ~H A. x e. ~H ( y +h x ) = x ) ) |
| 9 | 3 8 | ax-mp | |- ( GId ` +h ) = ( iota_ y e. ~H A. x e. ~H ( y +h x ) = x ) |
| 10 | hvaddlid | |- ( x e. ~H -> ( 0h +h x ) = x ) |
|
| 11 | 10 | rgen | |- A. x e. ~H ( 0h +h x ) = x |
| 12 | ax-hv0cl | |- 0h e. ~H |
|
| 13 | 6 | grpoideu | |- ( +h e. GrpOp -> E! y e. ~H A. x e. ~H ( y +h x ) = x ) |
| 14 | 3 13 | ax-mp | |- E! y e. ~H A. x e. ~H ( y +h x ) = x |
| 15 | oveq1 | |- ( y = 0h -> ( y +h x ) = ( 0h +h x ) ) |
|
| 16 | 15 | eqeq1d | |- ( y = 0h -> ( ( y +h x ) = x <-> ( 0h +h x ) = x ) ) |
| 17 | 16 | ralbidv | |- ( y = 0h -> ( A. x e. ~H ( y +h x ) = x <-> A. x e. ~H ( 0h +h x ) = x ) ) |
| 18 | 17 | riota2 | |- ( ( 0h e. ~H /\ E! y e. ~H A. x e. ~H ( y +h x ) = x ) -> ( A. x e. ~H ( 0h +h x ) = x <-> ( iota_ y e. ~H A. x e. ~H ( y +h x ) = x ) = 0h ) ) |
| 19 | 12 14 18 | mp2an | |- ( A. x e. ~H ( 0h +h x ) = x <-> ( iota_ y e. ~H A. x e. ~H ( y +h x ) = x ) = 0h ) |
| 20 | 11 19 | mpbi | |- ( iota_ y e. ~H A. x e. ~H ( y +h x ) = x ) = 0h |
| 21 | 9 20 | eqtri | |- ( GId ` +h ) = 0h |