This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of a curried function with a constant first argument. (Contributed by NM, 28-Mar-2008) (Revised by Mario Carneiro, 26-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | curry1.1 | |- G = ( F o. `' ( 2nd |` ( { C } X. _V ) ) ) |
|
| Assertion | curry1val | |- ( ( F Fn ( A X. B ) /\ C e. A ) -> ( G ` D ) = ( C F D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | curry1.1 | |- G = ( F o. `' ( 2nd |` ( { C } X. _V ) ) ) |
|
| 2 | 1 | curry1 | |- ( ( F Fn ( A X. B ) /\ C e. A ) -> G = ( x e. B |-> ( C F x ) ) ) |
| 3 | 2 | fveq1d | |- ( ( F Fn ( A X. B ) /\ C e. A ) -> ( G ` D ) = ( ( x e. B |-> ( C F x ) ) ` D ) ) |
| 4 | eqid | |- ( x e. B |-> ( C F x ) ) = ( x e. B |-> ( C F x ) ) |
|
| 5 | 4 | fvmptndm | |- ( -. D e. B -> ( ( x e. B |-> ( C F x ) ) ` D ) = (/) ) |
| 6 | 5 | adantl | |- ( ( ( F Fn ( A X. B ) /\ C e. A ) /\ -. D e. B ) -> ( ( x e. B |-> ( C F x ) ) ` D ) = (/) ) |
| 7 | fndm | |- ( F Fn ( A X. B ) -> dom F = ( A X. B ) ) |
|
| 8 | 7 | adantr | |- ( ( F Fn ( A X. B ) /\ C e. A ) -> dom F = ( A X. B ) ) |
| 9 | simpr | |- ( ( C e. A /\ D e. B ) -> D e. B ) |
|
| 10 | 9 | con3i | |- ( -. D e. B -> -. ( C e. A /\ D e. B ) ) |
| 11 | ndmovg | |- ( ( dom F = ( A X. B ) /\ -. ( C e. A /\ D e. B ) ) -> ( C F D ) = (/) ) |
|
| 12 | 8 10 11 | syl2an | |- ( ( ( F Fn ( A X. B ) /\ C e. A ) /\ -. D e. B ) -> ( C F D ) = (/) ) |
| 13 | 6 12 | eqtr4d | |- ( ( ( F Fn ( A X. B ) /\ C e. A ) /\ -. D e. B ) -> ( ( x e. B |-> ( C F x ) ) ` D ) = ( C F D ) ) |
| 14 | 13 | ex | |- ( ( F Fn ( A X. B ) /\ C e. A ) -> ( -. D e. B -> ( ( x e. B |-> ( C F x ) ) ` D ) = ( C F D ) ) ) |
| 15 | oveq2 | |- ( x = D -> ( C F x ) = ( C F D ) ) |
|
| 16 | ovex | |- ( C F D ) e. _V |
|
| 17 | 15 4 16 | fvmpt | |- ( D e. B -> ( ( x e. B |-> ( C F x ) ) ` D ) = ( C F D ) ) |
| 18 | 14 17 | pm2.61d2 | |- ( ( F Fn ( A X. B ) /\ C e. A ) -> ( ( x e. B |-> ( C F x ) ) ` D ) = ( C F D ) ) |
| 19 | 3 18 | eqtrd | |- ( ( F Fn ( A X. B ) /\ C e. A ) -> ( G ` D ) = ( C F D ) ) |