This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert space vector addition is an Abelian group operation. (Contributed by NM, 15-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hilablo | |- +h e. AbelOp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hilex | |- ~H e. _V |
|
| 2 | ax-hfvadd | |- +h : ( ~H X. ~H ) --> ~H |
|
| 3 | ax-hvass | |- ( ( x e. ~H /\ y e. ~H /\ z e. ~H ) -> ( ( x +h y ) +h z ) = ( x +h ( y +h z ) ) ) |
|
| 4 | ax-hv0cl | |- 0h e. ~H |
|
| 5 | hvaddlid | |- ( x e. ~H -> ( 0h +h x ) = x ) |
|
| 6 | neg1cn | |- -u 1 e. CC |
|
| 7 | hvmulcl | |- ( ( -u 1 e. CC /\ x e. ~H ) -> ( -u 1 .h x ) e. ~H ) |
|
| 8 | 6 7 | mpan | |- ( x e. ~H -> ( -u 1 .h x ) e. ~H ) |
| 9 | ax-hvcom | |- ( ( ( -u 1 .h x ) e. ~H /\ x e. ~H ) -> ( ( -u 1 .h x ) +h x ) = ( x +h ( -u 1 .h x ) ) ) |
|
| 10 | 8 9 | mpancom | |- ( x e. ~H -> ( ( -u 1 .h x ) +h x ) = ( x +h ( -u 1 .h x ) ) ) |
| 11 | hvnegid | |- ( x e. ~H -> ( x +h ( -u 1 .h x ) ) = 0h ) |
|
| 12 | 10 11 | eqtrd | |- ( x e. ~H -> ( ( -u 1 .h x ) +h x ) = 0h ) |
| 13 | 1 2 3 4 5 8 12 | isgrpoi | |- +h e. GrpOp |
| 14 | 2 | fdmi | |- dom +h = ( ~H X. ~H ) |
| 15 | ax-hvcom | |- ( ( x e. ~H /\ y e. ~H ) -> ( x +h y ) = ( y +h x ) ) |
|
| 16 | 13 14 15 | isabloi | |- +h e. AbelOp |