This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert space is a normed complex vector space. (Contributed by NM, 17-Nov-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hhnv.1 | |- U = <. <. +h , .h >. , normh >. |
|
| Assertion | hhnv | |- U e. NrmCVec |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhnv.1 | |- U = <. <. +h , .h >. , normh >. |
|
| 2 | hilablo | |- +h e. AbelOp |
|
| 3 | ablogrpo | |- ( +h e. AbelOp -> +h e. GrpOp ) |
|
| 4 | 2 3 | ax-mp | |- +h e. GrpOp |
| 5 | ax-hfvadd | |- +h : ( ~H X. ~H ) --> ~H |
|
| 6 | 5 | fdmi | |- dom +h = ( ~H X. ~H ) |
| 7 | 4 6 | grporn | |- ~H = ran +h |
| 8 | hilid | |- ( GId ` +h ) = 0h |
|
| 9 | 8 | eqcomi | |- 0h = ( GId ` +h ) |
| 10 | hilvc | |- <. +h , .h >. e. CVecOLD |
|
| 11 | normf | |- normh : ~H --> RR |
|
| 12 | norm-i | |- ( x e. ~H -> ( ( normh ` x ) = 0 <-> x = 0h ) ) |
|
| 13 | 12 | biimpa | |- ( ( x e. ~H /\ ( normh ` x ) = 0 ) -> x = 0h ) |
| 14 | norm-iii | |- ( ( y e. CC /\ x e. ~H ) -> ( normh ` ( y .h x ) ) = ( ( abs ` y ) x. ( normh ` x ) ) ) |
|
| 15 | norm-ii | |- ( ( x e. ~H /\ y e. ~H ) -> ( normh ` ( x +h y ) ) <_ ( ( normh ` x ) + ( normh ` y ) ) ) |
|
| 16 | 7 9 10 11 13 14 15 1 | isnvi | |- U e. NrmCVec |