This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group operation maps onto the group's underlying set. (Contributed by NM, 30-Oct-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | grpfo.1 | |- X = ran G |
|
| Assertion | grpofo | |- ( G e. GrpOp -> G : ( X X. X ) -onto-> X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpfo.1 | |- X = ran G |
|
| 2 | 1 | isgrpo | |- ( G e. GrpOp -> ( G e. GrpOp <-> ( G : ( X X. X ) --> X /\ A. x e. X A. y e. X A. z e. X ( ( x G y ) G z ) = ( x G ( y G z ) ) /\ E. u e. X A. x e. X ( ( u G x ) = x /\ E. y e. X ( y G x ) = u ) ) ) ) |
| 3 | 2 | ibi | |- ( G e. GrpOp -> ( G : ( X X. X ) --> X /\ A. x e. X A. y e. X A. z e. X ( ( x G y ) G z ) = ( x G ( y G z ) ) /\ E. u e. X A. x e. X ( ( u G x ) = x /\ E. y e. X ( y G x ) = u ) ) ) |
| 4 | 3 | simp1d | |- ( G e. GrpOp -> G : ( X X. X ) --> X ) |
| 5 | 1 | eqcomi | |- ran G = X |
| 6 | 4 5 | jctir | |- ( G e. GrpOp -> ( G : ( X X. X ) --> X /\ ran G = X ) ) |
| 7 | dffo2 | |- ( G : ( X X. X ) -onto-> X <-> ( G : ( X X. X ) --> X /\ ran G = X ) ) |
|
| 8 | 6 7 | sylibr | |- ( G e. GrpOp -> G : ( X X. X ) -onto-> X ) |