This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Abelian group property of subspace addition. (Contributed by NM, 9-Apr-2008) (Revised by Mario Carneiro, 23-Dec-2013) (Proof shortened by AV, 27-Aug-2021) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hhssabl.1 | |- H e. SH |
|
| Assertion | hhssabloi | |- ( +h |` ( H X. H ) ) e. AbelOp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhssabl.1 | |- H e. SH |
|
| 2 | 1 | hhssabloilem | |- ( +h e. GrpOp /\ ( +h |` ( H X. H ) ) e. GrpOp /\ ( +h |` ( H X. H ) ) C_ +h ) |
| 3 | 2 | simp2i | |- ( +h |` ( H X. H ) ) e. GrpOp |
| 4 | 1 | shssii | |- H C_ ~H |
| 5 | xpss12 | |- ( ( H C_ ~H /\ H C_ ~H ) -> ( H X. H ) C_ ( ~H X. ~H ) ) |
|
| 6 | 4 4 5 | mp2an | |- ( H X. H ) C_ ( ~H X. ~H ) |
| 7 | ax-hfvadd | |- +h : ( ~H X. ~H ) --> ~H |
|
| 8 | 7 | fdmi | |- dom +h = ( ~H X. ~H ) |
| 9 | 6 8 | sseqtrri | |- ( H X. H ) C_ dom +h |
| 10 | ssdmres | |- ( ( H X. H ) C_ dom +h <-> dom ( +h |` ( H X. H ) ) = ( H X. H ) ) |
|
| 11 | 9 10 | mpbi | |- dom ( +h |` ( H X. H ) ) = ( H X. H ) |
| 12 | 1 | sheli | |- ( x e. H -> x e. ~H ) |
| 13 | 1 | sheli | |- ( y e. H -> y e. ~H ) |
| 14 | ax-hvcom | |- ( ( x e. ~H /\ y e. ~H ) -> ( x +h y ) = ( y +h x ) ) |
|
| 15 | 12 13 14 | syl2an | |- ( ( x e. H /\ y e. H ) -> ( x +h y ) = ( y +h x ) ) |
| 16 | ovres | |- ( ( x e. H /\ y e. H ) -> ( x ( +h |` ( H X. H ) ) y ) = ( x +h y ) ) |
|
| 17 | ovres | |- ( ( y e. H /\ x e. H ) -> ( y ( +h |` ( H X. H ) ) x ) = ( y +h x ) ) |
|
| 18 | 17 | ancoms | |- ( ( x e. H /\ y e. H ) -> ( y ( +h |` ( H X. H ) ) x ) = ( y +h x ) ) |
| 19 | 15 16 18 | 3eqtr4d | |- ( ( x e. H /\ y e. H ) -> ( x ( +h |` ( H X. H ) ) y ) = ( y ( +h |` ( H X. H ) ) x ) ) |
| 20 | 3 11 19 | isabloi | |- ( +h |` ( H X. H ) ) e. AbelOp |