This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for hhssabloi . Formerly part of proof for hhssabloi which was based on the deprecated definition "SubGrpOp" for subgroups. (Contributed by NM, 9-Apr-2008) (Revised by Mario Carneiro, 23-Dec-2013) (Revised by AV, 27-Aug-2021) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hhssabl.1 | ⊢ 𝐻 ∈ Sℋ | |
| Assertion | hhssabloilem | ⊢ ( +ℎ ∈ GrpOp ∧ ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ∈ GrpOp ∧ ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ⊆ +ℎ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhssabl.1 | ⊢ 𝐻 ∈ Sℋ | |
| 2 | hilablo | ⊢ +ℎ ∈ AbelOp | |
| 3 | ablogrpo | ⊢ ( +ℎ ∈ AbelOp → +ℎ ∈ GrpOp ) | |
| 4 | 2 3 | ax-mp | ⊢ +ℎ ∈ GrpOp |
| 5 | 1 | elexi | ⊢ 𝐻 ∈ V |
| 6 | eqid | ⊢ ran +ℎ = ran +ℎ | |
| 7 | 6 | grpofo | ⊢ ( +ℎ ∈ GrpOp → +ℎ : ( ran +ℎ × ran +ℎ ) –onto→ ran +ℎ ) |
| 8 | fof | ⊢ ( +ℎ : ( ran +ℎ × ran +ℎ ) –onto→ ran +ℎ → +ℎ : ( ran +ℎ × ran +ℎ ) ⟶ ran +ℎ ) | |
| 9 | 4 7 8 | mp2b | ⊢ +ℎ : ( ran +ℎ × ran +ℎ ) ⟶ ran +ℎ |
| 10 | 1 | shssii | ⊢ 𝐻 ⊆ ℋ |
| 11 | df-hba | ⊢ ℋ = ( BaseSet ‘ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ) | |
| 12 | eqid | ⊢ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
| 13 | 12 | hhva | ⊢ +ℎ = ( +𝑣 ‘ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ) |
| 14 | 11 13 | bafval | ⊢ ℋ = ran +ℎ |
| 15 | 10 14 | sseqtri | ⊢ 𝐻 ⊆ ran +ℎ |
| 16 | xpss12 | ⊢ ( ( 𝐻 ⊆ ran +ℎ ∧ 𝐻 ⊆ ran +ℎ ) → ( 𝐻 × 𝐻 ) ⊆ ( ran +ℎ × ran +ℎ ) ) | |
| 17 | 15 15 16 | mp2an | ⊢ ( 𝐻 × 𝐻 ) ⊆ ( ran +ℎ × ran +ℎ ) |
| 18 | fssres | ⊢ ( ( +ℎ : ( ran +ℎ × ran +ℎ ) ⟶ ran +ℎ ∧ ( 𝐻 × 𝐻 ) ⊆ ( ran +ℎ × ran +ℎ ) ) → ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) : ( 𝐻 × 𝐻 ) ⟶ ran +ℎ ) | |
| 19 | 9 17 18 | mp2an | ⊢ ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) : ( 𝐻 × 𝐻 ) ⟶ ran +ℎ |
| 20 | ffn | ⊢ ( ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) : ( 𝐻 × 𝐻 ) ⟶ ran +ℎ → ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) Fn ( 𝐻 × 𝐻 ) ) | |
| 21 | 19 20 | ax-mp | ⊢ ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) Fn ( 𝐻 × 𝐻 ) |
| 22 | ovres | ⊢ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) → ( 𝑥 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑦 ) = ( 𝑥 +ℎ 𝑦 ) ) | |
| 23 | shaddcl | ⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) → ( 𝑥 +ℎ 𝑦 ) ∈ 𝐻 ) | |
| 24 | 1 23 | mp3an1 | ⊢ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) → ( 𝑥 +ℎ 𝑦 ) ∈ 𝐻 ) |
| 25 | 22 24 | eqeltrd | ⊢ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) → ( 𝑥 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑦 ) ∈ 𝐻 ) |
| 26 | 25 | rgen2 | ⊢ ∀ 𝑥 ∈ 𝐻 ∀ 𝑦 ∈ 𝐻 ( 𝑥 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑦 ) ∈ 𝐻 |
| 27 | ffnov | ⊢ ( ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) : ( 𝐻 × 𝐻 ) ⟶ 𝐻 ↔ ( ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) Fn ( 𝐻 × 𝐻 ) ∧ ∀ 𝑥 ∈ 𝐻 ∀ 𝑦 ∈ 𝐻 ( 𝑥 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑦 ) ∈ 𝐻 ) ) | |
| 28 | 21 26 27 | mpbir2an | ⊢ ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) : ( 𝐻 × 𝐻 ) ⟶ 𝐻 |
| 29 | 22 | oveq1d | ⊢ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) → ( ( 𝑥 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑦 ) +ℎ 𝑧 ) = ( ( 𝑥 +ℎ 𝑦 ) +ℎ 𝑧 ) ) |
| 30 | 29 | 3adant3 | ⊢ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) → ( ( 𝑥 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑦 ) +ℎ 𝑧 ) = ( ( 𝑥 +ℎ 𝑦 ) +ℎ 𝑧 ) ) |
| 31 | ovres | ⊢ ( ( ( 𝑥 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑦 ) ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) → ( ( 𝑥 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑦 ) ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) = ( ( 𝑥 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑦 ) +ℎ 𝑧 ) ) | |
| 32 | 25 31 | stoic3 | ⊢ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) → ( ( 𝑥 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑦 ) ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) = ( ( 𝑥 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑦 ) +ℎ 𝑧 ) ) |
| 33 | ovres | ⊢ ( ( 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) → ( 𝑦 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) = ( 𝑦 +ℎ 𝑧 ) ) | |
| 34 | 33 | oveq2d | ⊢ ( ( 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) → ( 𝑥 +ℎ ( 𝑦 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) ) = ( 𝑥 +ℎ ( 𝑦 +ℎ 𝑧 ) ) ) |
| 35 | 34 | 3adant1 | ⊢ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) → ( 𝑥 +ℎ ( 𝑦 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) ) = ( 𝑥 +ℎ ( 𝑦 +ℎ 𝑧 ) ) ) |
| 36 | 28 | fovcl | ⊢ ( ( 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) → ( 𝑦 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) ∈ 𝐻 ) |
| 37 | ovres | ⊢ ( ( 𝑥 ∈ 𝐻 ∧ ( 𝑦 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) ∈ 𝐻 ) → ( 𝑥 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ( 𝑦 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) ) = ( 𝑥 +ℎ ( 𝑦 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) ) ) | |
| 38 | 36 37 | sylan2 | ⊢ ( ( 𝑥 ∈ 𝐻 ∧ ( 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) ) → ( 𝑥 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ( 𝑦 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) ) = ( 𝑥 +ℎ ( 𝑦 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) ) ) |
| 39 | 38 | 3impb | ⊢ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) → ( 𝑥 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ( 𝑦 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) ) = ( 𝑥 +ℎ ( 𝑦 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) ) ) |
| 40 | 15 | sseli | ⊢ ( 𝑥 ∈ 𝐻 → 𝑥 ∈ ran +ℎ ) |
| 41 | 15 | sseli | ⊢ ( 𝑦 ∈ 𝐻 → 𝑦 ∈ ran +ℎ ) |
| 42 | 15 | sseli | ⊢ ( 𝑧 ∈ 𝐻 → 𝑧 ∈ ran +ℎ ) |
| 43 | 6 | grpoass | ⊢ ( ( +ℎ ∈ GrpOp ∧ ( 𝑥 ∈ ran +ℎ ∧ 𝑦 ∈ ran +ℎ ∧ 𝑧 ∈ ran +ℎ ) ) → ( ( 𝑥 +ℎ 𝑦 ) +ℎ 𝑧 ) = ( 𝑥 +ℎ ( 𝑦 +ℎ 𝑧 ) ) ) |
| 44 | 4 43 | mpan | ⊢ ( ( 𝑥 ∈ ran +ℎ ∧ 𝑦 ∈ ran +ℎ ∧ 𝑧 ∈ ran +ℎ ) → ( ( 𝑥 +ℎ 𝑦 ) +ℎ 𝑧 ) = ( 𝑥 +ℎ ( 𝑦 +ℎ 𝑧 ) ) ) |
| 45 | 40 41 42 44 | syl3an | ⊢ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) → ( ( 𝑥 +ℎ 𝑦 ) +ℎ 𝑧 ) = ( 𝑥 +ℎ ( 𝑦 +ℎ 𝑧 ) ) ) |
| 46 | 35 39 45 | 3eqtr4d | ⊢ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) → ( 𝑥 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ( 𝑦 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) ) = ( ( 𝑥 +ℎ 𝑦 ) +ℎ 𝑧 ) ) |
| 47 | 30 32 46 | 3eqtr4d | ⊢ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) → ( ( 𝑥 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑦 ) ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) = ( 𝑥 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ( 𝑦 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑧 ) ) ) |
| 48 | hilid | ⊢ ( GId ‘ +ℎ ) = 0ℎ | |
| 49 | sh0 | ⊢ ( 𝐻 ∈ Sℋ → 0ℎ ∈ 𝐻 ) | |
| 50 | 1 49 | ax-mp | ⊢ 0ℎ ∈ 𝐻 |
| 51 | 48 50 | eqeltri | ⊢ ( GId ‘ +ℎ ) ∈ 𝐻 |
| 52 | ovres | ⊢ ( ( ( GId ‘ +ℎ ) ∈ 𝐻 ∧ 𝑥 ∈ 𝐻 ) → ( ( GId ‘ +ℎ ) ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑥 ) = ( ( GId ‘ +ℎ ) +ℎ 𝑥 ) ) | |
| 53 | 51 52 | mpan | ⊢ ( 𝑥 ∈ 𝐻 → ( ( GId ‘ +ℎ ) ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑥 ) = ( ( GId ‘ +ℎ ) +ℎ 𝑥 ) ) |
| 54 | eqid | ⊢ ( GId ‘ +ℎ ) = ( GId ‘ +ℎ ) | |
| 55 | 6 54 | grpolid | ⊢ ( ( +ℎ ∈ GrpOp ∧ 𝑥 ∈ ran +ℎ ) → ( ( GId ‘ +ℎ ) +ℎ 𝑥 ) = 𝑥 ) |
| 56 | 4 40 55 | sylancr | ⊢ ( 𝑥 ∈ 𝐻 → ( ( GId ‘ +ℎ ) +ℎ 𝑥 ) = 𝑥 ) |
| 57 | 53 56 | eqtrd | ⊢ ( 𝑥 ∈ 𝐻 → ( ( GId ‘ +ℎ ) ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑥 ) = 𝑥 ) |
| 58 | 12 | hhnv | ⊢ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ∈ NrmCVec |
| 59 | 12 | hhsm | ⊢ ·ℎ = ( ·𝑠OLD ‘ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ) |
| 60 | eqid | ⊢ ( ·ℎ ∘ ◡ ( 2nd ↾ ( { - 1 } × V ) ) ) = ( ·ℎ ∘ ◡ ( 2nd ↾ ( { - 1 } × V ) ) ) | |
| 61 | 13 59 60 | nvinvfval | ⊢ ( 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ∈ NrmCVec → ( ·ℎ ∘ ◡ ( 2nd ↾ ( { - 1 } × V ) ) ) = ( inv ‘ +ℎ ) ) |
| 62 | 58 61 | ax-mp | ⊢ ( ·ℎ ∘ ◡ ( 2nd ↾ ( { - 1 } × V ) ) ) = ( inv ‘ +ℎ ) |
| 63 | 62 | eqcomi | ⊢ ( inv ‘ +ℎ ) = ( ·ℎ ∘ ◡ ( 2nd ↾ ( { - 1 } × V ) ) ) |
| 64 | 63 | fveq1i | ⊢ ( ( inv ‘ +ℎ ) ‘ 𝑥 ) = ( ( ·ℎ ∘ ◡ ( 2nd ↾ ( { - 1 } × V ) ) ) ‘ 𝑥 ) |
| 65 | ax-hfvmul | ⊢ ·ℎ : ( ℂ × ℋ ) ⟶ ℋ | |
| 66 | ffn | ⊢ ( ·ℎ : ( ℂ × ℋ ) ⟶ ℋ → ·ℎ Fn ( ℂ × ℋ ) ) | |
| 67 | 65 66 | ax-mp | ⊢ ·ℎ Fn ( ℂ × ℋ ) |
| 68 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 69 | 60 | curry1val | ⊢ ( ( ·ℎ Fn ( ℂ × ℋ ) ∧ - 1 ∈ ℂ ) → ( ( ·ℎ ∘ ◡ ( 2nd ↾ ( { - 1 } × V ) ) ) ‘ 𝑥 ) = ( - 1 ·ℎ 𝑥 ) ) |
| 70 | 67 68 69 | mp2an | ⊢ ( ( ·ℎ ∘ ◡ ( 2nd ↾ ( { - 1 } × V ) ) ) ‘ 𝑥 ) = ( - 1 ·ℎ 𝑥 ) |
| 71 | shmulcl | ⊢ ( ( 𝐻 ∈ Sℋ ∧ - 1 ∈ ℂ ∧ 𝑥 ∈ 𝐻 ) → ( - 1 ·ℎ 𝑥 ) ∈ 𝐻 ) | |
| 72 | 1 68 71 | mp3an12 | ⊢ ( 𝑥 ∈ 𝐻 → ( - 1 ·ℎ 𝑥 ) ∈ 𝐻 ) |
| 73 | 70 72 | eqeltrid | ⊢ ( 𝑥 ∈ 𝐻 → ( ( ·ℎ ∘ ◡ ( 2nd ↾ ( { - 1 } × V ) ) ) ‘ 𝑥 ) ∈ 𝐻 ) |
| 74 | 64 73 | eqeltrid | ⊢ ( 𝑥 ∈ 𝐻 → ( ( inv ‘ +ℎ ) ‘ 𝑥 ) ∈ 𝐻 ) |
| 75 | ovres | ⊢ ( ( ( ( inv ‘ +ℎ ) ‘ 𝑥 ) ∈ 𝐻 ∧ 𝑥 ∈ 𝐻 ) → ( ( ( inv ‘ +ℎ ) ‘ 𝑥 ) ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑥 ) = ( ( ( inv ‘ +ℎ ) ‘ 𝑥 ) +ℎ 𝑥 ) ) | |
| 76 | 74 75 | mpancom | ⊢ ( 𝑥 ∈ 𝐻 → ( ( ( inv ‘ +ℎ ) ‘ 𝑥 ) ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑥 ) = ( ( ( inv ‘ +ℎ ) ‘ 𝑥 ) +ℎ 𝑥 ) ) |
| 77 | eqid | ⊢ ( inv ‘ +ℎ ) = ( inv ‘ +ℎ ) | |
| 78 | 6 54 77 | grpolinv | ⊢ ( ( +ℎ ∈ GrpOp ∧ 𝑥 ∈ ran +ℎ ) → ( ( ( inv ‘ +ℎ ) ‘ 𝑥 ) +ℎ 𝑥 ) = ( GId ‘ +ℎ ) ) |
| 79 | 4 40 78 | sylancr | ⊢ ( 𝑥 ∈ 𝐻 → ( ( ( inv ‘ +ℎ ) ‘ 𝑥 ) +ℎ 𝑥 ) = ( GId ‘ +ℎ ) ) |
| 80 | 76 79 | eqtrd | ⊢ ( 𝑥 ∈ 𝐻 → ( ( ( inv ‘ +ℎ ) ‘ 𝑥 ) ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝑥 ) = ( GId ‘ +ℎ ) ) |
| 81 | 5 28 47 51 57 74 80 | isgrpoi | ⊢ ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ∈ GrpOp |
| 82 | resss | ⊢ ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ⊆ +ℎ | |
| 83 | 4 81 82 | 3pm3.2i | ⊢ ( +ℎ ∈ GrpOp ∧ ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ∈ GrpOp ∧ ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ⊆ +ℎ ) |