This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the function for the base set of a normed complex vector space. (Contributed by NM, 23-Apr-2007) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bafval.1 | |- X = ( BaseSet ` U ) |
|
| bafval.2 | |- G = ( +v ` U ) |
||
| Assertion | bafval | |- X = ran G |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bafval.1 | |- X = ( BaseSet ` U ) |
|
| 2 | bafval.2 | |- G = ( +v ` U ) |
|
| 3 | fveq2 | |- ( u = U -> ( +v ` u ) = ( +v ` U ) ) |
|
| 4 | 3 | rneqd | |- ( u = U -> ran ( +v ` u ) = ran ( +v ` U ) ) |
| 5 | df-ba | |- BaseSet = ( u e. _V |-> ran ( +v ` u ) ) |
|
| 6 | fvex | |- ( +v ` U ) e. _V |
|
| 7 | 6 | rnex | |- ran ( +v ` U ) e. _V |
| 8 | 4 5 7 | fvmpt | |- ( U e. _V -> ( BaseSet ` U ) = ran ( +v ` U ) ) |
| 9 | rn0 | |- ran (/) = (/) |
|
| 10 | 9 | eqcomi | |- (/) = ran (/) |
| 11 | fvprc | |- ( -. U e. _V -> ( BaseSet ` U ) = (/) ) |
|
| 12 | fvprc | |- ( -. U e. _V -> ( +v ` U ) = (/) ) |
|
| 13 | 12 | rneqd | |- ( -. U e. _V -> ran ( +v ` U ) = ran (/) ) |
| 14 | 10 11 13 | 3eqtr4a | |- ( -. U e. _V -> ( BaseSet ` U ) = ran ( +v ` U ) ) |
| 15 | 8 14 | pm2.61i | |- ( BaseSet ` U ) = ran ( +v ` U ) |
| 16 | 2 | rneqi | |- ran G = ran ( +v ` U ) |
| 17 | 15 1 16 | 3eqtr4i | |- X = ran G |