This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties that determine a group operation. Read N as N ( x ) . (Contributed by NM, 4-Nov-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isgrpoi.1 | |- X e. _V |
|
| isgrpoi.2 | |- G : ( X X. X ) --> X |
||
| isgrpoi.3 | |- ( ( x e. X /\ y e. X /\ z e. X ) -> ( ( x G y ) G z ) = ( x G ( y G z ) ) ) |
||
| isgrpoi.4 | |- U e. X |
||
| isgrpoi.5 | |- ( x e. X -> ( U G x ) = x ) |
||
| isgrpoi.6 | |- ( x e. X -> N e. X ) |
||
| isgrpoi.7 | |- ( x e. X -> ( N G x ) = U ) |
||
| Assertion | isgrpoi | |- G e. GrpOp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isgrpoi.1 | |- X e. _V |
|
| 2 | isgrpoi.2 | |- G : ( X X. X ) --> X |
|
| 3 | isgrpoi.3 | |- ( ( x e. X /\ y e. X /\ z e. X ) -> ( ( x G y ) G z ) = ( x G ( y G z ) ) ) |
|
| 4 | isgrpoi.4 | |- U e. X |
|
| 5 | isgrpoi.5 | |- ( x e. X -> ( U G x ) = x ) |
|
| 6 | isgrpoi.6 | |- ( x e. X -> N e. X ) |
|
| 7 | isgrpoi.7 | |- ( x e. X -> ( N G x ) = U ) |
|
| 8 | 3 | rgen3 | |- A. x e. X A. y e. X A. z e. X ( ( x G y ) G z ) = ( x G ( y G z ) ) |
| 9 | oveq1 | |- ( y = N -> ( y G x ) = ( N G x ) ) |
|
| 10 | 9 | eqeq1d | |- ( y = N -> ( ( y G x ) = U <-> ( N G x ) = U ) ) |
| 11 | 10 | rspcev | |- ( ( N e. X /\ ( N G x ) = U ) -> E. y e. X ( y G x ) = U ) |
| 12 | 6 7 11 | syl2anc | |- ( x e. X -> E. y e. X ( y G x ) = U ) |
| 13 | 5 12 | jca | |- ( x e. X -> ( ( U G x ) = x /\ E. y e. X ( y G x ) = U ) ) |
| 14 | 13 | rgen | |- A. x e. X ( ( U G x ) = x /\ E. y e. X ( y G x ) = U ) |
| 15 | oveq1 | |- ( u = U -> ( u G x ) = ( U G x ) ) |
|
| 16 | 15 | eqeq1d | |- ( u = U -> ( ( u G x ) = x <-> ( U G x ) = x ) ) |
| 17 | eqeq2 | |- ( u = U -> ( ( y G x ) = u <-> ( y G x ) = U ) ) |
|
| 18 | 17 | rexbidv | |- ( u = U -> ( E. y e. X ( y G x ) = u <-> E. y e. X ( y G x ) = U ) ) |
| 19 | 16 18 | anbi12d | |- ( u = U -> ( ( ( u G x ) = x /\ E. y e. X ( y G x ) = u ) <-> ( ( U G x ) = x /\ E. y e. X ( y G x ) = U ) ) ) |
| 20 | 19 | ralbidv | |- ( u = U -> ( A. x e. X ( ( u G x ) = x /\ E. y e. X ( y G x ) = u ) <-> A. x e. X ( ( U G x ) = x /\ E. y e. X ( y G x ) = U ) ) ) |
| 21 | 20 | rspcev | |- ( ( U e. X /\ A. x e. X ( ( U G x ) = x /\ E. y e. X ( y G x ) = U ) ) -> E. u e. X A. x e. X ( ( u G x ) = x /\ E. y e. X ( y G x ) = u ) ) |
| 22 | 4 14 21 | mp2an | |- E. u e. X A. x e. X ( ( u G x ) = x /\ E. y e. X ( y G x ) = u ) |
| 23 | 1 1 | xpex | |- ( X X. X ) e. _V |
| 24 | fex | |- ( ( G : ( X X. X ) --> X /\ ( X X. X ) e. _V ) -> G e. _V ) |
|
| 25 | 2 23 24 | mp2an | |- G e. _V |
| 26 | 5 | eqcomd | |- ( x e. X -> x = ( U G x ) ) |
| 27 | rspceov | |- ( ( U e. X /\ x e. X /\ x = ( U G x ) ) -> E. y e. X E. z e. X x = ( y G z ) ) |
|
| 28 | 4 27 | mp3an1 | |- ( ( x e. X /\ x = ( U G x ) ) -> E. y e. X E. z e. X x = ( y G z ) ) |
| 29 | 26 28 | mpdan | |- ( x e. X -> E. y e. X E. z e. X x = ( y G z ) ) |
| 30 | 29 | rgen | |- A. x e. X E. y e. X E. z e. X x = ( y G z ) |
| 31 | foov | |- ( G : ( X X. X ) -onto-> X <-> ( G : ( X X. X ) --> X /\ A. x e. X E. y e. X E. z e. X x = ( y G z ) ) ) |
|
| 32 | 2 30 31 | mpbir2an | |- G : ( X X. X ) -onto-> X |
| 33 | forn | |- ( G : ( X X. X ) -onto-> X -> ran G = X ) |
|
| 34 | 32 33 | ax-mp | |- ran G = X |
| 35 | 34 | eqcomi | |- X = ran G |
| 36 | 35 | isgrpo | |- ( G e. _V -> ( G e. GrpOp <-> ( G : ( X X. X ) --> X /\ A. x e. X A. y e. X A. z e. X ( ( x G y ) G z ) = ( x G ( y G z ) ) /\ E. u e. X A. x e. X ( ( u G x ) = x /\ E. y e. X ( y G x ) = u ) ) ) ) |
| 37 | 25 36 | ax-mp | |- ( G e. GrpOp <-> ( G : ( X X. X ) --> X /\ A. x e. X A. y e. X A. z e. X ( ( x G y ) G z ) = ( x G ( y G z ) ) /\ E. u e. X A. x e. X ( ( u G x ) = x /\ E. y e. X ( y G x ) = u ) ) ) |
| 38 | 2 8 22 37 | mpbir3an | |- G e. GrpOp |