This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for heibor . Using countable choice ax-cc , we have fixed in advance a collection of finite 2 ^ -u n nets ( Fn ) for X (note that an r -net is a set of points in X whose r -balls cover X ). The set G is the subset of these points whose corresponding balls have no finite subcover (i.e. in the set K ). If the theorem was false, then X would be in K , and so some ball at each level would also be in K . But we can say more than this; given a ball ( y B n ) on level n , since level n + 1 covers the space and thus also ( y B n ) , using heiborlem1 there is a ball on the next level whose intersection with ( y B n ) also has no finite subcover. Now since the set G is a countable union of finite sets, it is countable (which needs ax-cc via iunctb ), and so we can apply ax-cc to G directly to get a function from G to itself, which points from each ball in K to a ball on the next level in K , and such that the intersection between these balls is also in K . (Contributed by Jeff Madsen, 18-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | heibor.1 | |- J = ( MetOpen ` D ) |
|
| heibor.3 | |- K = { u | -. E. v e. ( ~P U i^i Fin ) u C_ U. v } |
||
| heibor.4 | |- G = { <. y , n >. | ( n e. NN0 /\ y e. ( F ` n ) /\ ( y B n ) e. K ) } |
||
| heibor.5 | |- B = ( z e. X , m e. NN0 |-> ( z ( ball ` D ) ( 1 / ( 2 ^ m ) ) ) ) |
||
| heibor.6 | |- ( ph -> D e. ( CMet ` X ) ) |
||
| heibor.7 | |- ( ph -> F : NN0 --> ( ~P X i^i Fin ) ) |
||
| heibor.8 | |- ( ph -> A. n e. NN0 X = U_ y e. ( F ` n ) ( y B n ) ) |
||
| Assertion | heiborlem3 | |- ( ph -> E. g A. x e. G ( ( g ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( g ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | heibor.1 | |- J = ( MetOpen ` D ) |
|
| 2 | heibor.3 | |- K = { u | -. E. v e. ( ~P U i^i Fin ) u C_ U. v } |
|
| 3 | heibor.4 | |- G = { <. y , n >. | ( n e. NN0 /\ y e. ( F ` n ) /\ ( y B n ) e. K ) } |
|
| 4 | heibor.5 | |- B = ( z e. X , m e. NN0 |-> ( z ( ball ` D ) ( 1 / ( 2 ^ m ) ) ) ) |
|
| 5 | heibor.6 | |- ( ph -> D e. ( CMet ` X ) ) |
|
| 6 | heibor.7 | |- ( ph -> F : NN0 --> ( ~P X i^i Fin ) ) |
|
| 7 | heibor.8 | |- ( ph -> A. n e. NN0 X = U_ y e. ( F ` n ) ( y B n ) ) |
|
| 8 | nn0ex | |- NN0 e. _V |
|
| 9 | fvex | |- ( F ` t ) e. _V |
|
| 10 | vsnex | |- { t } e. _V |
|
| 11 | 9 10 | xpex | |- ( ( F ` t ) X. { t } ) e. _V |
| 12 | 8 11 | iunex | |- U_ t e. NN0 ( ( F ` t ) X. { t } ) e. _V |
| 13 | 3 | relopabiv | |- Rel G |
| 14 | 1st2nd | |- ( ( Rel G /\ x e. G ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
|
| 15 | 13 14 | mpan | |- ( x e. G -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
| 16 | 15 | eleq1d | |- ( x e. G -> ( x e. G <-> <. ( 1st ` x ) , ( 2nd ` x ) >. e. G ) ) |
| 17 | df-br | |- ( ( 1st ` x ) G ( 2nd ` x ) <-> <. ( 1st ` x ) , ( 2nd ` x ) >. e. G ) |
|
| 18 | 16 17 | bitr4di | |- ( x e. G -> ( x e. G <-> ( 1st ` x ) G ( 2nd ` x ) ) ) |
| 19 | fvex | |- ( 1st ` x ) e. _V |
|
| 20 | fvex | |- ( 2nd ` x ) e. _V |
|
| 21 | 1 2 3 19 20 | heiborlem2 | |- ( ( 1st ` x ) G ( 2nd ` x ) <-> ( ( 2nd ` x ) e. NN0 /\ ( 1st ` x ) e. ( F ` ( 2nd ` x ) ) /\ ( ( 1st ` x ) B ( 2nd ` x ) ) e. K ) ) |
| 22 | 18 21 | bitrdi | |- ( x e. G -> ( x e. G <-> ( ( 2nd ` x ) e. NN0 /\ ( 1st ` x ) e. ( F ` ( 2nd ` x ) ) /\ ( ( 1st ` x ) B ( 2nd ` x ) ) e. K ) ) ) |
| 23 | 22 | ibi | |- ( x e. G -> ( ( 2nd ` x ) e. NN0 /\ ( 1st ` x ) e. ( F ` ( 2nd ` x ) ) /\ ( ( 1st ` x ) B ( 2nd ` x ) ) e. K ) ) |
| 24 | 20 | snid | |- ( 2nd ` x ) e. { ( 2nd ` x ) } |
| 25 | opelxp | |- ( <. ( 1st ` x ) , ( 2nd ` x ) >. e. ( ( F ` ( 2nd ` x ) ) X. { ( 2nd ` x ) } ) <-> ( ( 1st ` x ) e. ( F ` ( 2nd ` x ) ) /\ ( 2nd ` x ) e. { ( 2nd ` x ) } ) ) |
|
| 26 | 24 25 | mpbiran2 | |- ( <. ( 1st ` x ) , ( 2nd ` x ) >. e. ( ( F ` ( 2nd ` x ) ) X. { ( 2nd ` x ) } ) <-> ( 1st ` x ) e. ( F ` ( 2nd ` x ) ) ) |
| 27 | fveq2 | |- ( t = ( 2nd ` x ) -> ( F ` t ) = ( F ` ( 2nd ` x ) ) ) |
|
| 28 | sneq | |- ( t = ( 2nd ` x ) -> { t } = { ( 2nd ` x ) } ) |
|
| 29 | 27 28 | xpeq12d | |- ( t = ( 2nd ` x ) -> ( ( F ` t ) X. { t } ) = ( ( F ` ( 2nd ` x ) ) X. { ( 2nd ` x ) } ) ) |
| 30 | 29 | eleq2d | |- ( t = ( 2nd ` x ) -> ( <. ( 1st ` x ) , ( 2nd ` x ) >. e. ( ( F ` t ) X. { t } ) <-> <. ( 1st ` x ) , ( 2nd ` x ) >. e. ( ( F ` ( 2nd ` x ) ) X. { ( 2nd ` x ) } ) ) ) |
| 31 | 30 | rspcev | |- ( ( ( 2nd ` x ) e. NN0 /\ <. ( 1st ` x ) , ( 2nd ` x ) >. e. ( ( F ` ( 2nd ` x ) ) X. { ( 2nd ` x ) } ) ) -> E. t e. NN0 <. ( 1st ` x ) , ( 2nd ` x ) >. e. ( ( F ` t ) X. { t } ) ) |
| 32 | 26 31 | sylan2br | |- ( ( ( 2nd ` x ) e. NN0 /\ ( 1st ` x ) e. ( F ` ( 2nd ` x ) ) ) -> E. t e. NN0 <. ( 1st ` x ) , ( 2nd ` x ) >. e. ( ( F ` t ) X. { t } ) ) |
| 33 | eliun | |- ( <. ( 1st ` x ) , ( 2nd ` x ) >. e. U_ t e. NN0 ( ( F ` t ) X. { t } ) <-> E. t e. NN0 <. ( 1st ` x ) , ( 2nd ` x ) >. e. ( ( F ` t ) X. { t } ) ) |
|
| 34 | 32 33 | sylibr | |- ( ( ( 2nd ` x ) e. NN0 /\ ( 1st ` x ) e. ( F ` ( 2nd ` x ) ) ) -> <. ( 1st ` x ) , ( 2nd ` x ) >. e. U_ t e. NN0 ( ( F ` t ) X. { t } ) ) |
| 35 | 34 | 3adant3 | |- ( ( ( 2nd ` x ) e. NN0 /\ ( 1st ` x ) e. ( F ` ( 2nd ` x ) ) /\ ( ( 1st ` x ) B ( 2nd ` x ) ) e. K ) -> <. ( 1st ` x ) , ( 2nd ` x ) >. e. U_ t e. NN0 ( ( F ` t ) X. { t } ) ) |
| 36 | 23 35 | syl | |- ( x e. G -> <. ( 1st ` x ) , ( 2nd ` x ) >. e. U_ t e. NN0 ( ( F ` t ) X. { t } ) ) |
| 37 | 15 36 | eqeltrd | |- ( x e. G -> x e. U_ t e. NN0 ( ( F ` t ) X. { t } ) ) |
| 38 | 37 | ssriv | |- G C_ U_ t e. NN0 ( ( F ` t ) X. { t } ) |
| 39 | ssdomg | |- ( U_ t e. NN0 ( ( F ` t ) X. { t } ) e. _V -> ( G C_ U_ t e. NN0 ( ( F ` t ) X. { t } ) -> G ~<_ U_ t e. NN0 ( ( F ` t ) X. { t } ) ) ) |
|
| 40 | 12 38 39 | mp2 | |- G ~<_ U_ t e. NN0 ( ( F ` t ) X. { t } ) |
| 41 | nn0ennn | |- NN0 ~~ NN |
|
| 42 | nnenom | |- NN ~~ _om |
|
| 43 | 41 42 | entri | |- NN0 ~~ _om |
| 44 | endom | |- ( NN0 ~~ _om -> NN0 ~<_ _om ) |
|
| 45 | 43 44 | ax-mp | |- NN0 ~<_ _om |
| 46 | vex | |- t e. _V |
|
| 47 | 9 46 | xpsnen | |- ( ( F ` t ) X. { t } ) ~~ ( F ` t ) |
| 48 | inss2 | |- ( ~P X i^i Fin ) C_ Fin |
|
| 49 | 6 | ffvelcdmda | |- ( ( ph /\ t e. NN0 ) -> ( F ` t ) e. ( ~P X i^i Fin ) ) |
| 50 | 48 49 | sselid | |- ( ( ph /\ t e. NN0 ) -> ( F ` t ) e. Fin ) |
| 51 | isfinite | |- ( ( F ` t ) e. Fin <-> ( F ` t ) ~< _om ) |
|
| 52 | sdomdom | |- ( ( F ` t ) ~< _om -> ( F ` t ) ~<_ _om ) |
|
| 53 | 51 52 | sylbi | |- ( ( F ` t ) e. Fin -> ( F ` t ) ~<_ _om ) |
| 54 | 50 53 | syl | |- ( ( ph /\ t e. NN0 ) -> ( F ` t ) ~<_ _om ) |
| 55 | endomtr | |- ( ( ( ( F ` t ) X. { t } ) ~~ ( F ` t ) /\ ( F ` t ) ~<_ _om ) -> ( ( F ` t ) X. { t } ) ~<_ _om ) |
|
| 56 | 47 54 55 | sylancr | |- ( ( ph /\ t e. NN0 ) -> ( ( F ` t ) X. { t } ) ~<_ _om ) |
| 57 | 56 | ralrimiva | |- ( ph -> A. t e. NN0 ( ( F ` t ) X. { t } ) ~<_ _om ) |
| 58 | iunctb | |- ( ( NN0 ~<_ _om /\ A. t e. NN0 ( ( F ` t ) X. { t } ) ~<_ _om ) -> U_ t e. NN0 ( ( F ` t ) X. { t } ) ~<_ _om ) |
|
| 59 | 45 57 58 | sylancr | |- ( ph -> U_ t e. NN0 ( ( F ` t ) X. { t } ) ~<_ _om ) |
| 60 | domtr | |- ( ( G ~<_ U_ t e. NN0 ( ( F ` t ) X. { t } ) /\ U_ t e. NN0 ( ( F ` t ) X. { t } ) ~<_ _om ) -> G ~<_ _om ) |
|
| 61 | 40 59 60 | sylancr | |- ( ph -> G ~<_ _om ) |
| 62 | 23 | simp1d | |- ( x e. G -> ( 2nd ` x ) e. NN0 ) |
| 63 | peano2nn0 | |- ( ( 2nd ` x ) e. NN0 -> ( ( 2nd ` x ) + 1 ) e. NN0 ) |
|
| 64 | 62 63 | syl | |- ( x e. G -> ( ( 2nd ` x ) + 1 ) e. NN0 ) |
| 65 | ffvelcdm | |- ( ( F : NN0 --> ( ~P X i^i Fin ) /\ ( ( 2nd ` x ) + 1 ) e. NN0 ) -> ( F ` ( ( 2nd ` x ) + 1 ) ) e. ( ~P X i^i Fin ) ) |
|
| 66 | 6 64 65 | syl2an | |- ( ( ph /\ x e. G ) -> ( F ` ( ( 2nd ` x ) + 1 ) ) e. ( ~P X i^i Fin ) ) |
| 67 | 48 66 | sselid | |- ( ( ph /\ x e. G ) -> ( F ` ( ( 2nd ` x ) + 1 ) ) e. Fin ) |
| 68 | iunin2 | |- U_ t e. ( F ` ( ( 2nd ` x ) + 1 ) ) ( ( B ` x ) i^i ( t B ( ( 2nd ` x ) + 1 ) ) ) = ( ( B ` x ) i^i U_ t e. ( F ` ( ( 2nd ` x ) + 1 ) ) ( t B ( ( 2nd ` x ) + 1 ) ) ) |
|
| 69 | oveq1 | |- ( y = t -> ( y B n ) = ( t B n ) ) |
|
| 70 | 69 | cbviunv | |- U_ y e. ( F ` n ) ( y B n ) = U_ t e. ( F ` n ) ( t B n ) |
| 71 | fveq2 | |- ( n = ( ( 2nd ` x ) + 1 ) -> ( F ` n ) = ( F ` ( ( 2nd ` x ) + 1 ) ) ) |
|
| 72 | 71 | iuneq1d | |- ( n = ( ( 2nd ` x ) + 1 ) -> U_ t e. ( F ` n ) ( t B n ) = U_ t e. ( F ` ( ( 2nd ` x ) + 1 ) ) ( t B n ) ) |
| 73 | 70 72 | eqtrid | |- ( n = ( ( 2nd ` x ) + 1 ) -> U_ y e. ( F ` n ) ( y B n ) = U_ t e. ( F ` ( ( 2nd ` x ) + 1 ) ) ( t B n ) ) |
| 74 | oveq2 | |- ( n = ( ( 2nd ` x ) + 1 ) -> ( t B n ) = ( t B ( ( 2nd ` x ) + 1 ) ) ) |
|
| 75 | 74 | iuneq2d | |- ( n = ( ( 2nd ` x ) + 1 ) -> U_ t e. ( F ` ( ( 2nd ` x ) + 1 ) ) ( t B n ) = U_ t e. ( F ` ( ( 2nd ` x ) + 1 ) ) ( t B ( ( 2nd ` x ) + 1 ) ) ) |
| 76 | 73 75 | eqtrd | |- ( n = ( ( 2nd ` x ) + 1 ) -> U_ y e. ( F ` n ) ( y B n ) = U_ t e. ( F ` ( ( 2nd ` x ) + 1 ) ) ( t B ( ( 2nd ` x ) + 1 ) ) ) |
| 77 | 76 | eqeq2d | |- ( n = ( ( 2nd ` x ) + 1 ) -> ( X = U_ y e. ( F ` n ) ( y B n ) <-> X = U_ t e. ( F ` ( ( 2nd ` x ) + 1 ) ) ( t B ( ( 2nd ` x ) + 1 ) ) ) ) |
| 78 | 77 | rspccva | |- ( ( A. n e. NN0 X = U_ y e. ( F ` n ) ( y B n ) /\ ( ( 2nd ` x ) + 1 ) e. NN0 ) -> X = U_ t e. ( F ` ( ( 2nd ` x ) + 1 ) ) ( t B ( ( 2nd ` x ) + 1 ) ) ) |
| 79 | 7 64 78 | syl2an | |- ( ( ph /\ x e. G ) -> X = U_ t e. ( F ` ( ( 2nd ` x ) + 1 ) ) ( t B ( ( 2nd ` x ) + 1 ) ) ) |
| 80 | 79 | ineq2d | |- ( ( ph /\ x e. G ) -> ( ( B ` x ) i^i X ) = ( ( B ` x ) i^i U_ t e. ( F ` ( ( 2nd ` x ) + 1 ) ) ( t B ( ( 2nd ` x ) + 1 ) ) ) ) |
| 81 | 15 | fveq2d | |- ( x e. G -> ( B ` x ) = ( B ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) ) |
| 82 | df-ov | |- ( ( 1st ` x ) B ( 2nd ` x ) ) = ( B ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
|
| 83 | 81 82 | eqtr4di | |- ( x e. G -> ( B ` x ) = ( ( 1st ` x ) B ( 2nd ` x ) ) ) |
| 84 | 83 | adantl | |- ( ( ph /\ x e. G ) -> ( B ` x ) = ( ( 1st ` x ) B ( 2nd ` x ) ) ) |
| 85 | inss1 | |- ( ~P X i^i Fin ) C_ ~P X |
|
| 86 | ffvelcdm | |- ( ( F : NN0 --> ( ~P X i^i Fin ) /\ ( 2nd ` x ) e. NN0 ) -> ( F ` ( 2nd ` x ) ) e. ( ~P X i^i Fin ) ) |
|
| 87 | 6 62 86 | syl2an | |- ( ( ph /\ x e. G ) -> ( F ` ( 2nd ` x ) ) e. ( ~P X i^i Fin ) ) |
| 88 | 85 87 | sselid | |- ( ( ph /\ x e. G ) -> ( F ` ( 2nd ` x ) ) e. ~P X ) |
| 89 | 88 | elpwid | |- ( ( ph /\ x e. G ) -> ( F ` ( 2nd ` x ) ) C_ X ) |
| 90 | 23 | simp2d | |- ( x e. G -> ( 1st ` x ) e. ( F ` ( 2nd ` x ) ) ) |
| 91 | 90 | adantl | |- ( ( ph /\ x e. G ) -> ( 1st ` x ) e. ( F ` ( 2nd ` x ) ) ) |
| 92 | 89 91 | sseldd | |- ( ( ph /\ x e. G ) -> ( 1st ` x ) e. X ) |
| 93 | 62 | adantl | |- ( ( ph /\ x e. G ) -> ( 2nd ` x ) e. NN0 ) |
| 94 | oveq1 | |- ( z = ( 1st ` x ) -> ( z ( ball ` D ) ( 1 / ( 2 ^ m ) ) ) = ( ( 1st ` x ) ( ball ` D ) ( 1 / ( 2 ^ m ) ) ) ) |
|
| 95 | oveq2 | |- ( m = ( 2nd ` x ) -> ( 2 ^ m ) = ( 2 ^ ( 2nd ` x ) ) ) |
|
| 96 | 95 | oveq2d | |- ( m = ( 2nd ` x ) -> ( 1 / ( 2 ^ m ) ) = ( 1 / ( 2 ^ ( 2nd ` x ) ) ) ) |
| 97 | 96 | oveq2d | |- ( m = ( 2nd ` x ) -> ( ( 1st ` x ) ( ball ` D ) ( 1 / ( 2 ^ m ) ) ) = ( ( 1st ` x ) ( ball ` D ) ( 1 / ( 2 ^ ( 2nd ` x ) ) ) ) ) |
| 98 | ovex | |- ( ( 1st ` x ) ( ball ` D ) ( 1 / ( 2 ^ ( 2nd ` x ) ) ) ) e. _V |
|
| 99 | 94 97 4 98 | ovmpo | |- ( ( ( 1st ` x ) e. X /\ ( 2nd ` x ) e. NN0 ) -> ( ( 1st ` x ) B ( 2nd ` x ) ) = ( ( 1st ` x ) ( ball ` D ) ( 1 / ( 2 ^ ( 2nd ` x ) ) ) ) ) |
| 100 | 92 93 99 | syl2anc | |- ( ( ph /\ x e. G ) -> ( ( 1st ` x ) B ( 2nd ` x ) ) = ( ( 1st ` x ) ( ball ` D ) ( 1 / ( 2 ^ ( 2nd ` x ) ) ) ) ) |
| 101 | 84 100 | eqtrd | |- ( ( ph /\ x e. G ) -> ( B ` x ) = ( ( 1st ` x ) ( ball ` D ) ( 1 / ( 2 ^ ( 2nd ` x ) ) ) ) ) |
| 102 | cmetmet | |- ( D e. ( CMet ` X ) -> D e. ( Met ` X ) ) |
|
| 103 | 5 102 | syl | |- ( ph -> D e. ( Met ` X ) ) |
| 104 | metxmet | |- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
|
| 105 | 103 104 | syl | |- ( ph -> D e. ( *Met ` X ) ) |
| 106 | 105 | adantr | |- ( ( ph /\ x e. G ) -> D e. ( *Met ` X ) ) |
| 107 | 2nn | |- 2 e. NN |
|
| 108 | nnexpcl | |- ( ( 2 e. NN /\ ( 2nd ` x ) e. NN0 ) -> ( 2 ^ ( 2nd ` x ) ) e. NN ) |
|
| 109 | 107 93 108 | sylancr | |- ( ( ph /\ x e. G ) -> ( 2 ^ ( 2nd ` x ) ) e. NN ) |
| 110 | 109 | nnrpd | |- ( ( ph /\ x e. G ) -> ( 2 ^ ( 2nd ` x ) ) e. RR+ ) |
| 111 | 110 | rpreccld | |- ( ( ph /\ x e. G ) -> ( 1 / ( 2 ^ ( 2nd ` x ) ) ) e. RR+ ) |
| 112 | 111 | rpxrd | |- ( ( ph /\ x e. G ) -> ( 1 / ( 2 ^ ( 2nd ` x ) ) ) e. RR* ) |
| 113 | blssm | |- ( ( D e. ( *Met ` X ) /\ ( 1st ` x ) e. X /\ ( 1 / ( 2 ^ ( 2nd ` x ) ) ) e. RR* ) -> ( ( 1st ` x ) ( ball ` D ) ( 1 / ( 2 ^ ( 2nd ` x ) ) ) ) C_ X ) |
|
| 114 | 106 92 112 113 | syl3anc | |- ( ( ph /\ x e. G ) -> ( ( 1st ` x ) ( ball ` D ) ( 1 / ( 2 ^ ( 2nd ` x ) ) ) ) C_ X ) |
| 115 | 101 114 | eqsstrd | |- ( ( ph /\ x e. G ) -> ( B ` x ) C_ X ) |
| 116 | dfss2 | |- ( ( B ` x ) C_ X <-> ( ( B ` x ) i^i X ) = ( B ` x ) ) |
|
| 117 | 115 116 | sylib | |- ( ( ph /\ x e. G ) -> ( ( B ` x ) i^i X ) = ( B ` x ) ) |
| 118 | 80 117 | eqtr3d | |- ( ( ph /\ x e. G ) -> ( ( B ` x ) i^i U_ t e. ( F ` ( ( 2nd ` x ) + 1 ) ) ( t B ( ( 2nd ` x ) + 1 ) ) ) = ( B ` x ) ) |
| 119 | 68 118 | eqtrid | |- ( ( ph /\ x e. G ) -> U_ t e. ( F ` ( ( 2nd ` x ) + 1 ) ) ( ( B ` x ) i^i ( t B ( ( 2nd ` x ) + 1 ) ) ) = ( B ` x ) ) |
| 120 | eqimss2 | |- ( U_ t e. ( F ` ( ( 2nd ` x ) + 1 ) ) ( ( B ` x ) i^i ( t B ( ( 2nd ` x ) + 1 ) ) ) = ( B ` x ) -> ( B ` x ) C_ U_ t e. ( F ` ( ( 2nd ` x ) + 1 ) ) ( ( B ` x ) i^i ( t B ( ( 2nd ` x ) + 1 ) ) ) ) |
|
| 121 | 119 120 | syl | |- ( ( ph /\ x e. G ) -> ( B ` x ) C_ U_ t e. ( F ` ( ( 2nd ` x ) + 1 ) ) ( ( B ` x ) i^i ( t B ( ( 2nd ` x ) + 1 ) ) ) ) |
| 122 | 23 | simp3d | |- ( x e. G -> ( ( 1st ` x ) B ( 2nd ` x ) ) e. K ) |
| 123 | 83 122 | eqeltrd | |- ( x e. G -> ( B ` x ) e. K ) |
| 124 | 123 | adantl | |- ( ( ph /\ x e. G ) -> ( B ` x ) e. K ) |
| 125 | fvex | |- ( B ` x ) e. _V |
|
| 126 | 125 | inex1 | |- ( ( B ` x ) i^i ( t B ( ( 2nd ` x ) + 1 ) ) ) e. _V |
| 127 | 1 2 126 | heiborlem1 | |- ( ( ( F ` ( ( 2nd ` x ) + 1 ) ) e. Fin /\ ( B ` x ) C_ U_ t e. ( F ` ( ( 2nd ` x ) + 1 ) ) ( ( B ` x ) i^i ( t B ( ( 2nd ` x ) + 1 ) ) ) /\ ( B ` x ) e. K ) -> E. t e. ( F ` ( ( 2nd ` x ) + 1 ) ) ( ( B ` x ) i^i ( t B ( ( 2nd ` x ) + 1 ) ) ) e. K ) |
| 128 | 67 121 124 127 | syl3anc | |- ( ( ph /\ x e. G ) -> E. t e. ( F ` ( ( 2nd ` x ) + 1 ) ) ( ( B ` x ) i^i ( t B ( ( 2nd ` x ) + 1 ) ) ) e. K ) |
| 129 | 85 66 | sselid | |- ( ( ph /\ x e. G ) -> ( F ` ( ( 2nd ` x ) + 1 ) ) e. ~P X ) |
| 130 | 129 | elpwid | |- ( ( ph /\ x e. G ) -> ( F ` ( ( 2nd ` x ) + 1 ) ) C_ X ) |
| 131 | 1 | mopnuni | |- ( D e. ( *Met ` X ) -> X = U. J ) |
| 132 | 105 131 | syl | |- ( ph -> X = U. J ) |
| 133 | 132 | adantr | |- ( ( ph /\ x e. G ) -> X = U. J ) |
| 134 | 130 133 | sseqtrd | |- ( ( ph /\ x e. G ) -> ( F ` ( ( 2nd ` x ) + 1 ) ) C_ U. J ) |
| 135 | 134 | sselda | |- ( ( ( ph /\ x e. G ) /\ t e. ( F ` ( ( 2nd ` x ) + 1 ) ) ) -> t e. U. J ) |
| 136 | 135 | adantrr | |- ( ( ( ph /\ x e. G ) /\ ( t e. ( F ` ( ( 2nd ` x ) + 1 ) ) /\ ( ( B ` x ) i^i ( t B ( ( 2nd ` x ) + 1 ) ) ) e. K ) ) -> t e. U. J ) |
| 137 | 64 | adantl | |- ( ( ph /\ x e. G ) -> ( ( 2nd ` x ) + 1 ) e. NN0 ) |
| 138 | id | |- ( t e. ( F ` ( ( 2nd ` x ) + 1 ) ) -> t e. ( F ` ( ( 2nd ` x ) + 1 ) ) ) |
|
| 139 | snfi | |- { ( t B ( ( 2nd ` x ) + 1 ) ) } e. Fin |
|
| 140 | inss2 | |- ( ( B ` x ) i^i ( t B ( ( 2nd ` x ) + 1 ) ) ) C_ ( t B ( ( 2nd ` x ) + 1 ) ) |
|
| 141 | ovex | |- ( t B ( ( 2nd ` x ) + 1 ) ) e. _V |
|
| 142 | 141 | unisn | |- U. { ( t B ( ( 2nd ` x ) + 1 ) ) } = ( t B ( ( 2nd ` x ) + 1 ) ) |
| 143 | uniiun | |- U. { ( t B ( ( 2nd ` x ) + 1 ) ) } = U_ g e. { ( t B ( ( 2nd ` x ) + 1 ) ) } g |
|
| 144 | 142 143 | eqtr3i | |- ( t B ( ( 2nd ` x ) + 1 ) ) = U_ g e. { ( t B ( ( 2nd ` x ) + 1 ) ) } g |
| 145 | 140 144 | sseqtri | |- ( ( B ` x ) i^i ( t B ( ( 2nd ` x ) + 1 ) ) ) C_ U_ g e. { ( t B ( ( 2nd ` x ) + 1 ) ) } g |
| 146 | vex | |- g e. _V |
|
| 147 | 1 2 146 | heiborlem1 | |- ( ( { ( t B ( ( 2nd ` x ) + 1 ) ) } e. Fin /\ ( ( B ` x ) i^i ( t B ( ( 2nd ` x ) + 1 ) ) ) C_ U_ g e. { ( t B ( ( 2nd ` x ) + 1 ) ) } g /\ ( ( B ` x ) i^i ( t B ( ( 2nd ` x ) + 1 ) ) ) e. K ) -> E. g e. { ( t B ( ( 2nd ` x ) + 1 ) ) } g e. K ) |
| 148 | 139 145 147 | mp3an12 | |- ( ( ( B ` x ) i^i ( t B ( ( 2nd ` x ) + 1 ) ) ) e. K -> E. g e. { ( t B ( ( 2nd ` x ) + 1 ) ) } g e. K ) |
| 149 | eleq1 | |- ( g = ( t B ( ( 2nd ` x ) + 1 ) ) -> ( g e. K <-> ( t B ( ( 2nd ` x ) + 1 ) ) e. K ) ) |
|
| 150 | 141 149 | rexsn | |- ( E. g e. { ( t B ( ( 2nd ` x ) + 1 ) ) } g e. K <-> ( t B ( ( 2nd ` x ) + 1 ) ) e. K ) |
| 151 | 148 150 | sylib | |- ( ( ( B ` x ) i^i ( t B ( ( 2nd ` x ) + 1 ) ) ) e. K -> ( t B ( ( 2nd ` x ) + 1 ) ) e. K ) |
| 152 | ovex | |- ( ( 2nd ` x ) + 1 ) e. _V |
|
| 153 | 1 2 3 46 152 | heiborlem2 | |- ( t G ( ( 2nd ` x ) + 1 ) <-> ( ( ( 2nd ` x ) + 1 ) e. NN0 /\ t e. ( F ` ( ( 2nd ` x ) + 1 ) ) /\ ( t B ( ( 2nd ` x ) + 1 ) ) e. K ) ) |
| 154 | 153 | biimpri | |- ( ( ( ( 2nd ` x ) + 1 ) e. NN0 /\ t e. ( F ` ( ( 2nd ` x ) + 1 ) ) /\ ( t B ( ( 2nd ` x ) + 1 ) ) e. K ) -> t G ( ( 2nd ` x ) + 1 ) ) |
| 155 | 137 138 151 154 | syl3an | |- ( ( ( ph /\ x e. G ) /\ t e. ( F ` ( ( 2nd ` x ) + 1 ) ) /\ ( ( B ` x ) i^i ( t B ( ( 2nd ` x ) + 1 ) ) ) e. K ) -> t G ( ( 2nd ` x ) + 1 ) ) |
| 156 | 155 | 3expb | |- ( ( ( ph /\ x e. G ) /\ ( t e. ( F ` ( ( 2nd ` x ) + 1 ) ) /\ ( ( B ` x ) i^i ( t B ( ( 2nd ` x ) + 1 ) ) ) e. K ) ) -> t G ( ( 2nd ` x ) + 1 ) ) |
| 157 | simprr | |- ( ( ( ph /\ x e. G ) /\ ( t e. ( F ` ( ( 2nd ` x ) + 1 ) ) /\ ( ( B ` x ) i^i ( t B ( ( 2nd ` x ) + 1 ) ) ) e. K ) ) -> ( ( B ` x ) i^i ( t B ( ( 2nd ` x ) + 1 ) ) ) e. K ) |
|
| 158 | 136 156 157 | jca32 | |- ( ( ( ph /\ x e. G ) /\ ( t e. ( F ` ( ( 2nd ` x ) + 1 ) ) /\ ( ( B ` x ) i^i ( t B ( ( 2nd ` x ) + 1 ) ) ) e. K ) ) -> ( t e. U. J /\ ( t G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( t B ( ( 2nd ` x ) + 1 ) ) ) e. K ) ) ) |
| 159 | 158 | ex | |- ( ( ph /\ x e. G ) -> ( ( t e. ( F ` ( ( 2nd ` x ) + 1 ) ) /\ ( ( B ` x ) i^i ( t B ( ( 2nd ` x ) + 1 ) ) ) e. K ) -> ( t e. U. J /\ ( t G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( t B ( ( 2nd ` x ) + 1 ) ) ) e. K ) ) ) ) |
| 160 | 159 | reximdv2 | |- ( ( ph /\ x e. G ) -> ( E. t e. ( F ` ( ( 2nd ` x ) + 1 ) ) ( ( B ` x ) i^i ( t B ( ( 2nd ` x ) + 1 ) ) ) e. K -> E. t e. U. J ( t G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( t B ( ( 2nd ` x ) + 1 ) ) ) e. K ) ) ) |
| 161 | 128 160 | mpd | |- ( ( ph /\ x e. G ) -> E. t e. U. J ( t G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( t B ( ( 2nd ` x ) + 1 ) ) ) e. K ) ) |
| 162 | 161 | ralrimiva | |- ( ph -> A. x e. G E. t e. U. J ( t G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( t B ( ( 2nd ` x ) + 1 ) ) ) e. K ) ) |
| 163 | 1 | fvexi | |- J e. _V |
| 164 | 163 | uniex | |- U. J e. _V |
| 165 | breq1 | |- ( t = ( g ` x ) -> ( t G ( ( 2nd ` x ) + 1 ) <-> ( g ` x ) G ( ( 2nd ` x ) + 1 ) ) ) |
|
| 166 | oveq1 | |- ( t = ( g ` x ) -> ( t B ( ( 2nd ` x ) + 1 ) ) = ( ( g ` x ) B ( ( 2nd ` x ) + 1 ) ) ) |
|
| 167 | 166 | ineq2d | |- ( t = ( g ` x ) -> ( ( B ` x ) i^i ( t B ( ( 2nd ` x ) + 1 ) ) ) = ( ( B ` x ) i^i ( ( g ` x ) B ( ( 2nd ` x ) + 1 ) ) ) ) |
| 168 | 167 | eleq1d | |- ( t = ( g ` x ) -> ( ( ( B ` x ) i^i ( t B ( ( 2nd ` x ) + 1 ) ) ) e. K <-> ( ( B ` x ) i^i ( ( g ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) ) |
| 169 | 165 168 | anbi12d | |- ( t = ( g ` x ) -> ( ( t G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( t B ( ( 2nd ` x ) + 1 ) ) ) e. K ) <-> ( ( g ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( g ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) ) ) |
| 170 | 164 169 | axcc4dom | |- ( ( G ~<_ _om /\ A. x e. G E. t e. U. J ( t G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( t B ( ( 2nd ` x ) + 1 ) ) ) e. K ) ) -> E. g ( g : G --> U. J /\ A. x e. G ( ( g ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( g ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) ) ) |
| 171 | 61 162 170 | syl2anc | |- ( ph -> E. g ( g : G --> U. J /\ A. x e. G ( ( g ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( g ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) ) ) |
| 172 | exsimpr | |- ( E. g ( g : G --> U. J /\ A. x e. G ( ( g ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( g ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) ) -> E. g A. x e. G ( ( g ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( g ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) ) |
|
| 173 | 171 172 | syl | |- ( ph -> E. g A. x e. G ( ( g ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( g ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) ) |