This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The countable union of countable sets is countable (indexed union version of unictb ). (Contributed by Mario Carneiro, 18-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iunctb | |- ( ( A ~<_ _om /\ A. x e. A B ~<_ _om ) -> U_ x e. A B ~<_ _om ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- U_ x e. A ( { x } X. B ) = U_ x e. A ( { x } X. B ) |
|
| 2 | simpl | |- ( ( A ~<_ _om /\ A. x e. A B ~<_ _om ) -> A ~<_ _om ) |
|
| 3 | ctex | |- ( A ~<_ _om -> A e. _V ) |
|
| 4 | 3 | adantr | |- ( ( A ~<_ _om /\ A. x e. A B ~<_ _om ) -> A e. _V ) |
| 5 | ovex | |- ( _om ^m B ) e. _V |
|
| 6 | 5 | rgenw | |- A. x e. A ( _om ^m B ) e. _V |
| 7 | iunexg | |- ( ( A e. _V /\ A. x e. A ( _om ^m B ) e. _V ) -> U_ x e. A ( _om ^m B ) e. _V ) |
|
| 8 | 4 6 7 | sylancl | |- ( ( A ~<_ _om /\ A. x e. A B ~<_ _om ) -> U_ x e. A ( _om ^m B ) e. _V ) |
| 9 | acncc | |- AC_ _om = _V |
|
| 10 | 8 9 | eleqtrrdi | |- ( ( A ~<_ _om /\ A. x e. A B ~<_ _om ) -> U_ x e. A ( _om ^m B ) e. AC_ _om ) |
| 11 | acndom | |- ( A ~<_ _om -> ( U_ x e. A ( _om ^m B ) e. AC_ _om -> U_ x e. A ( _om ^m B ) e. AC_ A ) ) |
|
| 12 | 2 10 11 | sylc | |- ( ( A ~<_ _om /\ A. x e. A B ~<_ _om ) -> U_ x e. A ( _om ^m B ) e. AC_ A ) |
| 13 | simpr | |- ( ( A ~<_ _om /\ A. x e. A B ~<_ _om ) -> A. x e. A B ~<_ _om ) |
|
| 14 | omex | |- _om e. _V |
|
| 15 | xpdom1g | |- ( ( _om e. _V /\ A ~<_ _om ) -> ( A X. _om ) ~<_ ( _om X. _om ) ) |
|
| 16 | 14 2 15 | sylancr | |- ( ( A ~<_ _om /\ A. x e. A B ~<_ _om ) -> ( A X. _om ) ~<_ ( _om X. _om ) ) |
| 17 | xpomen | |- ( _om X. _om ) ~~ _om |
|
| 18 | domentr | |- ( ( ( A X. _om ) ~<_ ( _om X. _om ) /\ ( _om X. _om ) ~~ _om ) -> ( A X. _om ) ~<_ _om ) |
|
| 19 | 16 17 18 | sylancl | |- ( ( A ~<_ _om /\ A. x e. A B ~<_ _om ) -> ( A X. _om ) ~<_ _om ) |
| 20 | ctex | |- ( B ~<_ _om -> B e. _V ) |
|
| 21 | 20 | ralimi | |- ( A. x e. A B ~<_ _om -> A. x e. A B e. _V ) |
| 22 | iunexg | |- ( ( A e. _V /\ A. x e. A B e. _V ) -> U_ x e. A B e. _V ) |
|
| 23 | 3 21 22 | syl2an | |- ( ( A ~<_ _om /\ A. x e. A B ~<_ _om ) -> U_ x e. A B e. _V ) |
| 24 | omelon | |- _om e. On |
|
| 25 | onenon | |- ( _om e. On -> _om e. dom card ) |
|
| 26 | 24 25 | ax-mp | |- _om e. dom card |
| 27 | numacn | |- ( U_ x e. A B e. _V -> ( _om e. dom card -> _om e. AC_ U_ x e. A B ) ) |
|
| 28 | 23 26 27 | mpisyl | |- ( ( A ~<_ _om /\ A. x e. A B ~<_ _om ) -> _om e. AC_ U_ x e. A B ) |
| 29 | acndom2 | |- ( ( A X. _om ) ~<_ _om -> ( _om e. AC_ U_ x e. A B -> ( A X. _om ) e. AC_ U_ x e. A B ) ) |
|
| 30 | 19 28 29 | sylc | |- ( ( A ~<_ _om /\ A. x e. A B ~<_ _om ) -> ( A X. _om ) e. AC_ U_ x e. A B ) |
| 31 | 1 12 13 30 | iundomg | |- ( ( A ~<_ _om /\ A. x e. A B ~<_ _om ) -> U_ x e. A B ~<_ ( A X. _om ) ) |
| 32 | domtr | |- ( ( U_ x e. A B ~<_ ( A X. _om ) /\ ( A X. _om ) ~<_ _om ) -> U_ x e. A B ~<_ _om ) |
|
| 33 | 31 19 32 | syl2anc | |- ( ( A ~<_ _om /\ A. x e. A B ~<_ _om ) -> U_ x e. A B ~<_ _om ) |