This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function mapping an argument to either a value of a finitely supported function or zero is finitely supported. (Contributed by AV, 6-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsuppmptif.f | |- ( ph -> F : A --> B ) |
|
| fsuppmptif.a | |- ( ph -> A e. V ) |
||
| fsuppmptif.z | |- ( ph -> Z e. W ) |
||
| fsuppmptif.s | |- ( ph -> F finSupp Z ) |
||
| Assertion | fsuppmptif | |- ( ph -> ( k e. A |-> if ( k e. D , ( F ` k ) , Z ) ) finSupp Z ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppmptif.f | |- ( ph -> F : A --> B ) |
|
| 2 | fsuppmptif.a | |- ( ph -> A e. V ) |
|
| 3 | fsuppmptif.z | |- ( ph -> Z e. W ) |
|
| 4 | fsuppmptif.s | |- ( ph -> F finSupp Z ) |
|
| 5 | fvex | |- ( F ` k ) e. _V |
|
| 6 | 3 | adantr | |- ( ( ph /\ k e. A ) -> Z e. W ) |
| 7 | ifexg | |- ( ( ( F ` k ) e. _V /\ Z e. W ) -> if ( k e. D , ( F ` k ) , Z ) e. _V ) |
|
| 8 | 5 6 7 | sylancr | |- ( ( ph /\ k e. A ) -> if ( k e. D , ( F ` k ) , Z ) e. _V ) |
| 9 | 8 | fmpttd | |- ( ph -> ( k e. A |-> if ( k e. D , ( F ` k ) , Z ) ) : A --> _V ) |
| 10 | 9 | ffund | |- ( ph -> Fun ( k e. A |-> if ( k e. D , ( F ` k ) , Z ) ) ) |
| 11 | 4 | fsuppimpd | |- ( ph -> ( F supp Z ) e. Fin ) |
| 12 | ssidd | |- ( ph -> ( F supp Z ) C_ ( F supp Z ) ) |
|
| 13 | 1 12 2 3 | suppssr | |- ( ( ph /\ k e. ( A \ ( F supp Z ) ) ) -> ( F ` k ) = Z ) |
| 14 | 13 | ifeq1d | |- ( ( ph /\ k e. ( A \ ( F supp Z ) ) ) -> if ( k e. D , ( F ` k ) , Z ) = if ( k e. D , Z , Z ) ) |
| 15 | ifid | |- if ( k e. D , Z , Z ) = Z |
|
| 16 | 14 15 | eqtrdi | |- ( ( ph /\ k e. ( A \ ( F supp Z ) ) ) -> if ( k e. D , ( F ` k ) , Z ) = Z ) |
| 17 | 16 2 | suppss2 | |- ( ph -> ( ( k e. A |-> if ( k e. D , ( F ` k ) , Z ) ) supp Z ) C_ ( F supp Z ) ) |
| 18 | 11 17 | ssfid | |- ( ph -> ( ( k e. A |-> if ( k e. D , ( F ` k ) , Z ) ) supp Z ) e. Fin ) |
| 19 | 2 | mptexd | |- ( ph -> ( k e. A |-> if ( k e. D , ( F ` k ) , Z ) ) e. _V ) |
| 20 | isfsupp | |- ( ( ( k e. A |-> if ( k e. D , ( F ` k ) , Z ) ) e. _V /\ Z e. W ) -> ( ( k e. A |-> if ( k e. D , ( F ` k ) , Z ) ) finSupp Z <-> ( Fun ( k e. A |-> if ( k e. D , ( F ` k ) , Z ) ) /\ ( ( k e. A |-> if ( k e. D , ( F ` k ) , Z ) ) supp Z ) e. Fin ) ) ) |
|
| 21 | 19 3 20 | syl2anc | |- ( ph -> ( ( k e. A |-> if ( k e. D , ( F ` k ) , Z ) ) finSupp Z <-> ( Fun ( k e. A |-> if ( k e. D , ( F ` k ) , Z ) ) /\ ( ( k e. A |-> if ( k e. D , ( F ` k ) , Z ) ) supp Z ) e. Fin ) ) ) |
| 22 | 10 18 21 | mpbir2and | |- ( ph -> ( k e. A |-> if ( k e. D , ( F ` k ) , Z ) ) finSupp Z ) |