This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extend a finite group sum by padding outside with zeroes. (Contributed by Mario Carneiro, 24-Apr-2016) (Revised by AV, 31-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumzcl.b | |- B = ( Base ` G ) |
|
| gsumzcl.0 | |- .0. = ( 0g ` G ) |
||
| gsumzcl.z | |- Z = ( Cntz ` G ) |
||
| gsumzcl.g | |- ( ph -> G e. Mnd ) |
||
| gsumzcl.a | |- ( ph -> A e. V ) |
||
| gsumzcl.f | |- ( ph -> F : A --> B ) |
||
| gsumzcl.c | |- ( ph -> ran F C_ ( Z ` ran F ) ) |
||
| gsumzres.s | |- ( ph -> ( F supp .0. ) C_ W ) |
||
| gsumzres.w | |- ( ph -> F finSupp .0. ) |
||
| Assertion | gsumzres | |- ( ph -> ( G gsum ( F |` W ) ) = ( G gsum F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumzcl.b | |- B = ( Base ` G ) |
|
| 2 | gsumzcl.0 | |- .0. = ( 0g ` G ) |
|
| 3 | gsumzcl.z | |- Z = ( Cntz ` G ) |
|
| 4 | gsumzcl.g | |- ( ph -> G e. Mnd ) |
|
| 5 | gsumzcl.a | |- ( ph -> A e. V ) |
|
| 6 | gsumzcl.f | |- ( ph -> F : A --> B ) |
|
| 7 | gsumzcl.c | |- ( ph -> ran F C_ ( Z ` ran F ) ) |
|
| 8 | gsumzres.s | |- ( ph -> ( F supp .0. ) C_ W ) |
|
| 9 | gsumzres.w | |- ( ph -> F finSupp .0. ) |
|
| 10 | inex1g | |- ( A e. V -> ( A i^i W ) e. _V ) |
|
| 11 | 5 10 | syl | |- ( ph -> ( A i^i W ) e. _V ) |
| 12 | 2 | gsumz | |- ( ( G e. Mnd /\ ( A i^i W ) e. _V ) -> ( G gsum ( k e. ( A i^i W ) |-> .0. ) ) = .0. ) |
| 13 | 4 11 12 | syl2anc | |- ( ph -> ( G gsum ( k e. ( A i^i W ) |-> .0. ) ) = .0. ) |
| 14 | 2 | gsumz | |- ( ( G e. Mnd /\ A e. V ) -> ( G gsum ( k e. A |-> .0. ) ) = .0. ) |
| 15 | 4 5 14 | syl2anc | |- ( ph -> ( G gsum ( k e. A |-> .0. ) ) = .0. ) |
| 16 | 13 15 | eqtr4d | |- ( ph -> ( G gsum ( k e. ( A i^i W ) |-> .0. ) ) = ( G gsum ( k e. A |-> .0. ) ) ) |
| 17 | 16 | adantr | |- ( ( ph /\ ( F supp .0. ) = (/) ) -> ( G gsum ( k e. ( A i^i W ) |-> .0. ) ) = ( G gsum ( k e. A |-> .0. ) ) ) |
| 18 | resres | |- ( ( F |` A ) |` W ) = ( F |` ( A i^i W ) ) |
|
| 19 | ffn | |- ( F : A --> B -> F Fn A ) |
|
| 20 | fnresdm | |- ( F Fn A -> ( F |` A ) = F ) |
|
| 21 | 6 19 20 | 3syl | |- ( ph -> ( F |` A ) = F ) |
| 22 | 21 | reseq1d | |- ( ph -> ( ( F |` A ) |` W ) = ( F |` W ) ) |
| 23 | 18 22 | eqtr3id | |- ( ph -> ( F |` ( A i^i W ) ) = ( F |` W ) ) |
| 24 | 23 | adantr | |- ( ( ph /\ ( F supp .0. ) = (/) ) -> ( F |` ( A i^i W ) ) = ( F |` W ) ) |
| 25 | 2 | fvexi | |- .0. e. _V |
| 26 | 25 | a1i | |- ( ph -> .0. e. _V ) |
| 27 | ssid | |- ( F supp .0. ) C_ ( F supp .0. ) |
|
| 28 | 27 | a1i | |- ( ph -> ( F supp .0. ) C_ ( F supp .0. ) ) |
| 29 | 6 5 26 28 | gsumcllem | |- ( ( ph /\ ( F supp .0. ) = (/) ) -> F = ( k e. A |-> .0. ) ) |
| 30 | 29 | reseq1d | |- ( ( ph /\ ( F supp .0. ) = (/) ) -> ( F |` ( A i^i W ) ) = ( ( k e. A |-> .0. ) |` ( A i^i W ) ) ) |
| 31 | inss1 | |- ( A i^i W ) C_ A |
|
| 32 | resmpt | |- ( ( A i^i W ) C_ A -> ( ( k e. A |-> .0. ) |` ( A i^i W ) ) = ( k e. ( A i^i W ) |-> .0. ) ) |
|
| 33 | 31 32 | ax-mp | |- ( ( k e. A |-> .0. ) |` ( A i^i W ) ) = ( k e. ( A i^i W ) |-> .0. ) |
| 34 | 30 33 | eqtrdi | |- ( ( ph /\ ( F supp .0. ) = (/) ) -> ( F |` ( A i^i W ) ) = ( k e. ( A i^i W ) |-> .0. ) ) |
| 35 | 24 34 | eqtr3d | |- ( ( ph /\ ( F supp .0. ) = (/) ) -> ( F |` W ) = ( k e. ( A i^i W ) |-> .0. ) ) |
| 36 | 35 | oveq2d | |- ( ( ph /\ ( F supp .0. ) = (/) ) -> ( G gsum ( F |` W ) ) = ( G gsum ( k e. ( A i^i W ) |-> .0. ) ) ) |
| 37 | 29 | oveq2d | |- ( ( ph /\ ( F supp .0. ) = (/) ) -> ( G gsum F ) = ( G gsum ( k e. A |-> .0. ) ) ) |
| 38 | 17 36 37 | 3eqtr4d | |- ( ( ph /\ ( F supp .0. ) = (/) ) -> ( G gsum ( F |` W ) ) = ( G gsum F ) ) |
| 39 | 38 | ex | |- ( ph -> ( ( F supp .0. ) = (/) -> ( G gsum ( F |` W ) ) = ( G gsum F ) ) ) |
| 40 | f1ofo | |- ( f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) -> f : ( 1 ... ( # ` ( F supp .0. ) ) ) -onto-> ( F supp .0. ) ) |
|
| 41 | forn | |- ( f : ( 1 ... ( # ` ( F supp .0. ) ) ) -onto-> ( F supp .0. ) -> ran f = ( F supp .0. ) ) |
|
| 42 | 40 41 | syl | |- ( f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) -> ran f = ( F supp .0. ) ) |
| 43 | 42 | ad2antll | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ran f = ( F supp .0. ) ) |
| 44 | 8 | adantr | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( F supp .0. ) C_ W ) |
| 45 | 43 44 | eqsstrd | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ran f C_ W ) |
| 46 | cores | |- ( ran f C_ W -> ( ( F |` W ) o. f ) = ( F o. f ) ) |
|
| 47 | 45 46 | syl | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( ( F |` W ) o. f ) = ( F o. f ) ) |
| 48 | 47 | seqeq3d | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> seq 1 ( ( +g ` G ) , ( ( F |` W ) o. f ) ) = seq 1 ( ( +g ` G ) , ( F o. f ) ) ) |
| 49 | 48 | fveq1d | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( seq 1 ( ( +g ` G ) , ( ( F |` W ) o. f ) ) ` ( # ` ( F supp .0. ) ) ) = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` ( F supp .0. ) ) ) ) |
| 50 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 51 | 4 | adantr | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> G e. Mnd ) |
| 52 | 11 | adantr | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( A i^i W ) e. _V ) |
| 53 | 6 | adantr | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> F : A --> B ) |
| 54 | fssres | |- ( ( F : A --> B /\ ( A i^i W ) C_ A ) -> ( F |` ( A i^i W ) ) : ( A i^i W ) --> B ) |
|
| 55 | 53 31 54 | sylancl | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( F |` ( A i^i W ) ) : ( A i^i W ) --> B ) |
| 56 | 23 | feq1d | |- ( ph -> ( ( F |` ( A i^i W ) ) : ( A i^i W ) --> B <-> ( F |` W ) : ( A i^i W ) --> B ) ) |
| 57 | 56 | biimpa | |- ( ( ph /\ ( F |` ( A i^i W ) ) : ( A i^i W ) --> B ) -> ( F |` W ) : ( A i^i W ) --> B ) |
| 58 | 55 57 | syldan | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( F |` W ) : ( A i^i W ) --> B ) |
| 59 | resss | |- ( F |` W ) C_ F |
|
| 60 | 59 | rnssi | |- ran ( F |` W ) C_ ran F |
| 61 | 3 | cntzidss | |- ( ( ran F C_ ( Z ` ran F ) /\ ran ( F |` W ) C_ ran F ) -> ran ( F |` W ) C_ ( Z ` ran ( F |` W ) ) ) |
| 62 | 7 60 61 | sylancl | |- ( ph -> ran ( F |` W ) C_ ( Z ` ran ( F |` W ) ) ) |
| 63 | 62 | adantr | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ran ( F |` W ) C_ ( Z ` ran ( F |` W ) ) ) |
| 64 | simprl | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( # ` ( F supp .0. ) ) e. NN ) |
|
| 65 | f1of1 | |- ( f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) -> f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-> ( F supp .0. ) ) |
|
| 66 | 65 | ad2antll | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-> ( F supp .0. ) ) |
| 67 | suppssdm | |- ( F supp .0. ) C_ dom F |
|
| 68 | 67 6 | fssdm | |- ( ph -> ( F supp .0. ) C_ A ) |
| 69 | 68 8 | ssind | |- ( ph -> ( F supp .0. ) C_ ( A i^i W ) ) |
| 70 | 69 | adantr | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( F supp .0. ) C_ ( A i^i W ) ) |
| 71 | f1ss | |- ( ( f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-> ( F supp .0. ) /\ ( F supp .0. ) C_ ( A i^i W ) ) -> f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-> ( A i^i W ) ) |
|
| 72 | 66 70 71 | syl2anc | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-> ( A i^i W ) ) |
| 73 | 6 5 | fexd | |- ( ph -> F e. _V ) |
| 74 | ressuppss | |- ( ( F e. _V /\ .0. e. _V ) -> ( ( F |` W ) supp .0. ) C_ ( F supp .0. ) ) |
|
| 75 | 73 25 74 | sylancl | |- ( ph -> ( ( F |` W ) supp .0. ) C_ ( F supp .0. ) ) |
| 76 | sseq2 | |- ( ran f = ( F supp .0. ) -> ( ( ( F |` W ) supp .0. ) C_ ran f <-> ( ( F |` W ) supp .0. ) C_ ( F supp .0. ) ) ) |
|
| 77 | 75 76 | imbitrrid | |- ( ran f = ( F supp .0. ) -> ( ph -> ( ( F |` W ) supp .0. ) C_ ran f ) ) |
| 78 | 40 41 77 | 3syl | |- ( f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) -> ( ph -> ( ( F |` W ) supp .0. ) C_ ran f ) ) |
| 79 | 78 | adantl | |- ( ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) -> ( ph -> ( ( F |` W ) supp .0. ) C_ ran f ) ) |
| 80 | 79 | impcom | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( ( F |` W ) supp .0. ) C_ ran f ) |
| 81 | eqid | |- ( ( ( F |` W ) o. f ) supp .0. ) = ( ( ( F |` W ) o. f ) supp .0. ) |
|
| 82 | 1 2 50 3 51 52 58 63 64 72 80 81 | gsumval3 | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( G gsum ( F |` W ) ) = ( seq 1 ( ( +g ` G ) , ( ( F |` W ) o. f ) ) ` ( # ` ( F supp .0. ) ) ) ) |
| 83 | 5 | adantr | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> A e. V ) |
| 84 | 7 | adantr | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ran F C_ ( Z ` ran F ) ) |
| 85 | 68 | adantr | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( F supp .0. ) C_ A ) |
| 86 | f1ss | |- ( ( f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-> ( F supp .0. ) /\ ( F supp .0. ) C_ A ) -> f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-> A ) |
|
| 87 | 66 85 86 | syl2anc | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-> A ) |
| 88 | 27 43 | sseqtrrid | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( F supp .0. ) C_ ran f ) |
| 89 | eqid | |- ( ( F o. f ) supp .0. ) = ( ( F o. f ) supp .0. ) |
|
| 90 | 1 2 50 3 51 83 53 84 64 87 88 89 | gsumval3 | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( G gsum F ) = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` ( F supp .0. ) ) ) ) |
| 91 | 49 82 90 | 3eqtr4d | |- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( G gsum ( F |` W ) ) = ( G gsum F ) ) |
| 92 | 91 | expr | |- ( ( ph /\ ( # ` ( F supp .0. ) ) e. NN ) -> ( f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) -> ( G gsum ( F |` W ) ) = ( G gsum F ) ) ) |
| 93 | 92 | exlimdv | |- ( ( ph /\ ( # ` ( F supp .0. ) ) e. NN ) -> ( E. f f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) -> ( G gsum ( F |` W ) ) = ( G gsum F ) ) ) |
| 94 | 93 | expimpd | |- ( ph -> ( ( ( # ` ( F supp .0. ) ) e. NN /\ E. f f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) -> ( G gsum ( F |` W ) ) = ( G gsum F ) ) ) |
| 95 | fsuppimp | |- ( F finSupp .0. -> ( Fun F /\ ( F supp .0. ) e. Fin ) ) |
|
| 96 | 95 | simprd | |- ( F finSupp .0. -> ( F supp .0. ) e. Fin ) |
| 97 | fz1f1o | |- ( ( F supp .0. ) e. Fin -> ( ( F supp .0. ) = (/) \/ ( ( # ` ( F supp .0. ) ) e. NN /\ E. f f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) ) |
|
| 98 | 9 96 97 | 3syl | |- ( ph -> ( ( F supp .0. ) = (/) \/ ( ( # ` ( F supp .0. ) ) e. NN /\ E. f f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) ) |
| 99 | 39 94 98 | mpjaod | |- ( ph -> ( G gsum ( F |` W ) ) = ( G gsum F ) ) |