This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The range of a homomorphism is a subgroup. (Contributed by Stefan O'Rear, 31-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ghmrn | |- ( F e. ( S GrpHom T ) -> ran F e. ( SubGrp ` T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 2 | eqid | |- ( Base ` T ) = ( Base ` T ) |
|
| 3 | 1 2 | ghmf | |- ( F e. ( S GrpHom T ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
| 4 | 3 | frnd | |- ( F e. ( S GrpHom T ) -> ran F C_ ( Base ` T ) ) |
| 5 | 3 | fdmd | |- ( F e. ( S GrpHom T ) -> dom F = ( Base ` S ) ) |
| 6 | ghmgrp1 | |- ( F e. ( S GrpHom T ) -> S e. Grp ) |
|
| 7 | 1 | grpbn0 | |- ( S e. Grp -> ( Base ` S ) =/= (/) ) |
| 8 | 6 7 | syl | |- ( F e. ( S GrpHom T ) -> ( Base ` S ) =/= (/) ) |
| 9 | 5 8 | eqnetrd | |- ( F e. ( S GrpHom T ) -> dom F =/= (/) ) |
| 10 | dm0rn0 | |- ( dom F = (/) <-> ran F = (/) ) |
|
| 11 | 10 | necon3bii | |- ( dom F =/= (/) <-> ran F =/= (/) ) |
| 12 | 9 11 | sylib | |- ( F e. ( S GrpHom T ) -> ran F =/= (/) ) |
| 13 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 14 | eqid | |- ( +g ` T ) = ( +g ` T ) |
|
| 15 | 1 13 14 | ghmlin | |- ( ( F e. ( S GrpHom T ) /\ c e. ( Base ` S ) /\ a e. ( Base ` S ) ) -> ( F ` ( c ( +g ` S ) a ) ) = ( ( F ` c ) ( +g ` T ) ( F ` a ) ) ) |
| 16 | 3 | ffnd | |- ( F e. ( S GrpHom T ) -> F Fn ( Base ` S ) ) |
| 17 | 16 | 3ad2ant1 | |- ( ( F e. ( S GrpHom T ) /\ c e. ( Base ` S ) /\ a e. ( Base ` S ) ) -> F Fn ( Base ` S ) ) |
| 18 | 1 13 | grpcl | |- ( ( S e. Grp /\ c e. ( Base ` S ) /\ a e. ( Base ` S ) ) -> ( c ( +g ` S ) a ) e. ( Base ` S ) ) |
| 19 | 6 18 | syl3an1 | |- ( ( F e. ( S GrpHom T ) /\ c e. ( Base ` S ) /\ a e. ( Base ` S ) ) -> ( c ( +g ` S ) a ) e. ( Base ` S ) ) |
| 20 | fnfvelrn | |- ( ( F Fn ( Base ` S ) /\ ( c ( +g ` S ) a ) e. ( Base ` S ) ) -> ( F ` ( c ( +g ` S ) a ) ) e. ran F ) |
|
| 21 | 17 19 20 | syl2anc | |- ( ( F e. ( S GrpHom T ) /\ c e. ( Base ` S ) /\ a e. ( Base ` S ) ) -> ( F ` ( c ( +g ` S ) a ) ) e. ran F ) |
| 22 | 15 21 | eqeltrrd | |- ( ( F e. ( S GrpHom T ) /\ c e. ( Base ` S ) /\ a e. ( Base ` S ) ) -> ( ( F ` c ) ( +g ` T ) ( F ` a ) ) e. ran F ) |
| 23 | 22 | 3expia | |- ( ( F e. ( S GrpHom T ) /\ c e. ( Base ` S ) ) -> ( a e. ( Base ` S ) -> ( ( F ` c ) ( +g ` T ) ( F ` a ) ) e. ran F ) ) |
| 24 | 23 | ralrimiv | |- ( ( F e. ( S GrpHom T ) /\ c e. ( Base ` S ) ) -> A. a e. ( Base ` S ) ( ( F ` c ) ( +g ` T ) ( F ` a ) ) e. ran F ) |
| 25 | oveq2 | |- ( b = ( F ` a ) -> ( ( F ` c ) ( +g ` T ) b ) = ( ( F ` c ) ( +g ` T ) ( F ` a ) ) ) |
|
| 26 | 25 | eleq1d | |- ( b = ( F ` a ) -> ( ( ( F ` c ) ( +g ` T ) b ) e. ran F <-> ( ( F ` c ) ( +g ` T ) ( F ` a ) ) e. ran F ) ) |
| 27 | 26 | ralrn | |- ( F Fn ( Base ` S ) -> ( A. b e. ran F ( ( F ` c ) ( +g ` T ) b ) e. ran F <-> A. a e. ( Base ` S ) ( ( F ` c ) ( +g ` T ) ( F ` a ) ) e. ran F ) ) |
| 28 | 16 27 | syl | |- ( F e. ( S GrpHom T ) -> ( A. b e. ran F ( ( F ` c ) ( +g ` T ) b ) e. ran F <-> A. a e. ( Base ` S ) ( ( F ` c ) ( +g ` T ) ( F ` a ) ) e. ran F ) ) |
| 29 | 28 | adantr | |- ( ( F e. ( S GrpHom T ) /\ c e. ( Base ` S ) ) -> ( A. b e. ran F ( ( F ` c ) ( +g ` T ) b ) e. ran F <-> A. a e. ( Base ` S ) ( ( F ` c ) ( +g ` T ) ( F ` a ) ) e. ran F ) ) |
| 30 | 24 29 | mpbird | |- ( ( F e. ( S GrpHom T ) /\ c e. ( Base ` S ) ) -> A. b e. ran F ( ( F ` c ) ( +g ` T ) b ) e. ran F ) |
| 31 | eqid | |- ( invg ` S ) = ( invg ` S ) |
|
| 32 | eqid | |- ( invg ` T ) = ( invg ` T ) |
|
| 33 | 1 31 32 | ghminv | |- ( ( F e. ( S GrpHom T ) /\ c e. ( Base ` S ) ) -> ( F ` ( ( invg ` S ) ` c ) ) = ( ( invg ` T ) ` ( F ` c ) ) ) |
| 34 | 16 | adantr | |- ( ( F e. ( S GrpHom T ) /\ c e. ( Base ` S ) ) -> F Fn ( Base ` S ) ) |
| 35 | 1 31 | grpinvcl | |- ( ( S e. Grp /\ c e. ( Base ` S ) ) -> ( ( invg ` S ) ` c ) e. ( Base ` S ) ) |
| 36 | 6 35 | sylan | |- ( ( F e. ( S GrpHom T ) /\ c e. ( Base ` S ) ) -> ( ( invg ` S ) ` c ) e. ( Base ` S ) ) |
| 37 | fnfvelrn | |- ( ( F Fn ( Base ` S ) /\ ( ( invg ` S ) ` c ) e. ( Base ` S ) ) -> ( F ` ( ( invg ` S ) ` c ) ) e. ran F ) |
|
| 38 | 34 36 37 | syl2anc | |- ( ( F e. ( S GrpHom T ) /\ c e. ( Base ` S ) ) -> ( F ` ( ( invg ` S ) ` c ) ) e. ran F ) |
| 39 | 33 38 | eqeltrrd | |- ( ( F e. ( S GrpHom T ) /\ c e. ( Base ` S ) ) -> ( ( invg ` T ) ` ( F ` c ) ) e. ran F ) |
| 40 | 30 39 | jca | |- ( ( F e. ( S GrpHom T ) /\ c e. ( Base ` S ) ) -> ( A. b e. ran F ( ( F ` c ) ( +g ` T ) b ) e. ran F /\ ( ( invg ` T ) ` ( F ` c ) ) e. ran F ) ) |
| 41 | 40 | ralrimiva | |- ( F e. ( S GrpHom T ) -> A. c e. ( Base ` S ) ( A. b e. ran F ( ( F ` c ) ( +g ` T ) b ) e. ran F /\ ( ( invg ` T ) ` ( F ` c ) ) e. ran F ) ) |
| 42 | oveq1 | |- ( a = ( F ` c ) -> ( a ( +g ` T ) b ) = ( ( F ` c ) ( +g ` T ) b ) ) |
|
| 43 | 42 | eleq1d | |- ( a = ( F ` c ) -> ( ( a ( +g ` T ) b ) e. ran F <-> ( ( F ` c ) ( +g ` T ) b ) e. ran F ) ) |
| 44 | 43 | ralbidv | |- ( a = ( F ` c ) -> ( A. b e. ran F ( a ( +g ` T ) b ) e. ran F <-> A. b e. ran F ( ( F ` c ) ( +g ` T ) b ) e. ran F ) ) |
| 45 | fveq2 | |- ( a = ( F ` c ) -> ( ( invg ` T ) ` a ) = ( ( invg ` T ) ` ( F ` c ) ) ) |
|
| 46 | 45 | eleq1d | |- ( a = ( F ` c ) -> ( ( ( invg ` T ) ` a ) e. ran F <-> ( ( invg ` T ) ` ( F ` c ) ) e. ran F ) ) |
| 47 | 44 46 | anbi12d | |- ( a = ( F ` c ) -> ( ( A. b e. ran F ( a ( +g ` T ) b ) e. ran F /\ ( ( invg ` T ) ` a ) e. ran F ) <-> ( A. b e. ran F ( ( F ` c ) ( +g ` T ) b ) e. ran F /\ ( ( invg ` T ) ` ( F ` c ) ) e. ran F ) ) ) |
| 48 | 47 | ralrn | |- ( F Fn ( Base ` S ) -> ( A. a e. ran F ( A. b e. ran F ( a ( +g ` T ) b ) e. ran F /\ ( ( invg ` T ) ` a ) e. ran F ) <-> A. c e. ( Base ` S ) ( A. b e. ran F ( ( F ` c ) ( +g ` T ) b ) e. ran F /\ ( ( invg ` T ) ` ( F ` c ) ) e. ran F ) ) ) |
| 49 | 16 48 | syl | |- ( F e. ( S GrpHom T ) -> ( A. a e. ran F ( A. b e. ran F ( a ( +g ` T ) b ) e. ran F /\ ( ( invg ` T ) ` a ) e. ran F ) <-> A. c e. ( Base ` S ) ( A. b e. ran F ( ( F ` c ) ( +g ` T ) b ) e. ran F /\ ( ( invg ` T ) ` ( F ` c ) ) e. ran F ) ) ) |
| 50 | 41 49 | mpbird | |- ( F e. ( S GrpHom T ) -> A. a e. ran F ( A. b e. ran F ( a ( +g ` T ) b ) e. ran F /\ ( ( invg ` T ) ` a ) e. ran F ) ) |
| 51 | ghmgrp2 | |- ( F e. ( S GrpHom T ) -> T e. Grp ) |
|
| 52 | 2 14 32 | issubg2 | |- ( T e. Grp -> ( ran F e. ( SubGrp ` T ) <-> ( ran F C_ ( Base ` T ) /\ ran F =/= (/) /\ A. a e. ran F ( A. b e. ran F ( a ( +g ` T ) b ) e. ran F /\ ( ( invg ` T ) ` a ) e. ran F ) ) ) ) |
| 53 | 51 52 | syl | |- ( F e. ( S GrpHom T ) -> ( ran F e. ( SubGrp ` T ) <-> ( ran F C_ ( Base ` T ) /\ ran F =/= (/) /\ A. a e. ran F ( A. b e. ran F ( a ( +g ` T ) b ) e. ran F /\ ( ( invg ` T ) ` a ) e. ran F ) ) ) ) |
| 54 | 4 12 50 53 | mpbir3and | |- ( F e. ( S GrpHom T ) -> ran F e. ( SubGrp ` T ) ) |