This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the group operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qusgrp.h | |- H = ( G /s ( G ~QG S ) ) |
|
| qusadd.v | |- V = ( Base ` G ) |
||
| qusadd.p | |- .+ = ( +g ` G ) |
||
| qusadd.a | |- .+b = ( +g ` H ) |
||
| Assertion | qusadd | |- ( ( S e. ( NrmSGrp ` G ) /\ X e. V /\ Y e. V ) -> ( [ X ] ( G ~QG S ) .+b [ Y ] ( G ~QG S ) ) = [ ( X .+ Y ) ] ( G ~QG S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusgrp.h | |- H = ( G /s ( G ~QG S ) ) |
|
| 2 | qusadd.v | |- V = ( Base ` G ) |
|
| 3 | qusadd.p | |- .+ = ( +g ` G ) |
|
| 4 | qusadd.a | |- .+b = ( +g ` H ) |
|
| 5 | 1 | a1i | |- ( S e. ( NrmSGrp ` G ) -> H = ( G /s ( G ~QG S ) ) ) |
| 6 | 2 | a1i | |- ( S e. ( NrmSGrp ` G ) -> V = ( Base ` G ) ) |
| 7 | nsgsubg | |- ( S e. ( NrmSGrp ` G ) -> S e. ( SubGrp ` G ) ) |
|
| 8 | eqid | |- ( G ~QG S ) = ( G ~QG S ) |
|
| 9 | 2 8 | eqger | |- ( S e. ( SubGrp ` G ) -> ( G ~QG S ) Er V ) |
| 10 | 7 9 | syl | |- ( S e. ( NrmSGrp ` G ) -> ( G ~QG S ) Er V ) |
| 11 | subgrcl | |- ( S e. ( SubGrp ` G ) -> G e. Grp ) |
|
| 12 | 7 11 | syl | |- ( S e. ( NrmSGrp ` G ) -> G e. Grp ) |
| 13 | 2 8 3 | eqgcpbl | |- ( S e. ( NrmSGrp ` G ) -> ( ( a ( G ~QG S ) p /\ b ( G ~QG S ) q ) -> ( a .+ b ) ( G ~QG S ) ( p .+ q ) ) ) |
| 14 | 2 3 | grpcl | |- ( ( G e. Grp /\ p e. V /\ q e. V ) -> ( p .+ q ) e. V ) |
| 15 | 14 | 3expb | |- ( ( G e. Grp /\ ( p e. V /\ q e. V ) ) -> ( p .+ q ) e. V ) |
| 16 | 12 15 | sylan | |- ( ( S e. ( NrmSGrp ` G ) /\ ( p e. V /\ q e. V ) ) -> ( p .+ q ) e. V ) |
| 17 | 5 6 10 12 13 16 3 4 | qusaddval | |- ( ( S e. ( NrmSGrp ` G ) /\ X e. V /\ Y e. V ) -> ( [ X ] ( G ~QG S ) .+b [ Y ] ( G ~QG S ) ) = [ ( X .+ Y ) ] ( G ~QG S ) ) |