This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An infinite GCH-set is Dedekind-infinite. (Contributed by Mario Carneiro, 31-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gchinf | |- ( ( A e. GCH /\ -. A e. Fin ) -> _om ~<_ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gchdju1 | |- ( ( A e. GCH /\ -. A e. Fin ) -> ( A |_| 1o ) ~~ A ) |
|
| 2 | 1 | ensymd | |- ( ( A e. GCH /\ -. A e. Fin ) -> A ~~ ( A |_| 1o ) ) |
| 3 | isfin4-2 | |- ( A e. GCH -> ( A e. Fin4 <-> -. _om ~<_ A ) ) |
|
| 4 | 3 | adantr | |- ( ( A e. GCH /\ -. A e. Fin ) -> ( A e. Fin4 <-> -. _om ~<_ A ) ) |
| 5 | isfin4p1 | |- ( A e. Fin4 <-> A ~< ( A |_| 1o ) ) |
|
| 6 | sdomnen | |- ( A ~< ( A |_| 1o ) -> -. A ~~ ( A |_| 1o ) ) |
|
| 7 | 5 6 | sylbi | |- ( A e. Fin4 -> -. A ~~ ( A |_| 1o ) ) |
| 8 | 4 7 | biimtrrdi | |- ( ( A e. GCH /\ -. A e. Fin ) -> ( -. _om ~<_ A -> -. A ~~ ( A |_| 1o ) ) ) |
| 9 | 2 8 | mt4d | |- ( ( A e. GCH /\ -. A e. Fin ) -> _om ~<_ A ) |