This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The powerset of a Dedekind-infinite set does not inject into its cardinal sum with itself. (Contributed by Mario Carneiro, 31-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pwdjundom | |- ( _om ~<_ A -> -. ~P A ~<_ ( A |_| A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwxpndom2 | |- ( _om ~<_ A -> -. ~P A ~<_ ( A |_| ( A X. A ) ) ) |
|
| 2 | df1o2 | |- 1o = { (/) } |
|
| 3 | 2 | xpeq1i | |- ( 1o X. A ) = ( { (/) } X. A ) |
| 4 | 0ex | |- (/) e. _V |
|
| 5 | reldom | |- Rel ~<_ |
|
| 6 | 5 | brrelex2i | |- ( _om ~<_ A -> A e. _V ) |
| 7 | xpsnen2g | |- ( ( (/) e. _V /\ A e. _V ) -> ( { (/) } X. A ) ~~ A ) |
|
| 8 | 4 6 7 | sylancr | |- ( _om ~<_ A -> ( { (/) } X. A ) ~~ A ) |
| 9 | 3 8 | eqbrtrid | |- ( _om ~<_ A -> ( 1o X. A ) ~~ A ) |
| 10 | 9 | ensymd | |- ( _om ~<_ A -> A ~~ ( 1o X. A ) ) |
| 11 | omex | |- _om e. _V |
|
| 12 | ordom | |- Ord _om |
|
| 13 | 1onn | |- 1o e. _om |
|
| 14 | ordelss | |- ( ( Ord _om /\ 1o e. _om ) -> 1o C_ _om ) |
|
| 15 | 12 13 14 | mp2an | |- 1o C_ _om |
| 16 | ssdomg | |- ( _om e. _V -> ( 1o C_ _om -> 1o ~<_ _om ) ) |
|
| 17 | 11 15 16 | mp2 | |- 1o ~<_ _om |
| 18 | domtr | |- ( ( 1o ~<_ _om /\ _om ~<_ A ) -> 1o ~<_ A ) |
|
| 19 | 17 18 | mpan | |- ( _om ~<_ A -> 1o ~<_ A ) |
| 20 | xpdom1g | |- ( ( A e. _V /\ 1o ~<_ A ) -> ( 1o X. A ) ~<_ ( A X. A ) ) |
|
| 21 | 6 19 20 | syl2anc | |- ( _om ~<_ A -> ( 1o X. A ) ~<_ ( A X. A ) ) |
| 22 | endomtr | |- ( ( A ~~ ( 1o X. A ) /\ ( 1o X. A ) ~<_ ( A X. A ) ) -> A ~<_ ( A X. A ) ) |
|
| 23 | 10 21 22 | syl2anc | |- ( _om ~<_ A -> A ~<_ ( A X. A ) ) |
| 24 | djudom2 | |- ( ( A ~<_ ( A X. A ) /\ A e. _V ) -> ( A |_| A ) ~<_ ( A |_| ( A X. A ) ) ) |
|
| 25 | 23 6 24 | syl2anc | |- ( _om ~<_ A -> ( A |_| A ) ~<_ ( A |_| ( A X. A ) ) ) |
| 26 | domtr | |- ( ( ~P A ~<_ ( A |_| A ) /\ ( A |_| A ) ~<_ ( A |_| ( A X. A ) ) ) -> ~P A ~<_ ( A |_| ( A X. A ) ) ) |
|
| 27 | 26 | expcom | |- ( ( A |_| A ) ~<_ ( A |_| ( A X. A ) ) -> ( ~P A ~<_ ( A |_| A ) -> ~P A ~<_ ( A |_| ( A X. A ) ) ) ) |
| 28 | 25 27 | syl | |- ( _om ~<_ A -> ( ~P A ~<_ ( A |_| A ) -> ~P A ~<_ ( A |_| ( A X. A ) ) ) ) |
| 29 | 1 28 | mtod | |- ( _om ~<_ A -> -. ~P A ~<_ ( A |_| A ) ) |