This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Thus, there is at most one isomorphism between any two well-ordered sets. TODO: Shorten finnisoeu . (Contributed by Stefan O'Rear, 12-Feb-2015) (Revised by Mario Carneiro, 25-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wemoiso | |- ( R We A -> E* f f Isom R , S ( A , B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( R We A /\ ( f Isom R , S ( A , B ) /\ g Isom R , S ( A , B ) ) ) -> R We A ) |
|
| 2 | vex | |- f e. _V |
|
| 3 | isof1o | |- ( f Isom R , S ( A , B ) -> f : A -1-1-onto-> B ) |
|
| 4 | f1of | |- ( f : A -1-1-onto-> B -> f : A --> B ) |
|
| 5 | 3 4 | syl | |- ( f Isom R , S ( A , B ) -> f : A --> B ) |
| 6 | dmfex | |- ( ( f e. _V /\ f : A --> B ) -> A e. _V ) |
|
| 7 | 2 5 6 | sylancr | |- ( f Isom R , S ( A , B ) -> A e. _V ) |
| 8 | 7 | ad2antrl | |- ( ( R We A /\ ( f Isom R , S ( A , B ) /\ g Isom R , S ( A , B ) ) ) -> A e. _V ) |
| 9 | exse | |- ( A e. _V -> R Se A ) |
|
| 10 | 8 9 | syl | |- ( ( R We A /\ ( f Isom R , S ( A , B ) /\ g Isom R , S ( A , B ) ) ) -> R Se A ) |
| 11 | 1 10 | jca | |- ( ( R We A /\ ( f Isom R , S ( A , B ) /\ g Isom R , S ( A , B ) ) ) -> ( R We A /\ R Se A ) ) |
| 12 | weisoeq | |- ( ( ( R We A /\ R Se A ) /\ ( f Isom R , S ( A , B ) /\ g Isom R , S ( A , B ) ) ) -> f = g ) |
|
| 13 | 11 12 | sylancom | |- ( ( R We A /\ ( f Isom R , S ( A , B ) /\ g Isom R , S ( A , B ) ) ) -> f = g ) |
| 14 | 13 | ex | |- ( R We A -> ( ( f Isom R , S ( A , B ) /\ g Isom R , S ( A , B ) ) -> f = g ) ) |
| 15 | 14 | alrimivv | |- ( R We A -> A. f A. g ( ( f Isom R , S ( A , B ) /\ g Isom R , S ( A , B ) ) -> f = g ) ) |
| 16 | isoeq1 | |- ( f = g -> ( f Isom R , S ( A , B ) <-> g Isom R , S ( A , B ) ) ) |
|
| 17 | 16 | mo4 | |- ( E* f f Isom R , S ( A , B ) <-> A. f A. g ( ( f Isom R , S ( A , B ) /\ g Isom R , S ( A , B ) ) -> f = g ) ) |
| 18 | 15 17 | sylibr | |- ( R We A -> E* f f Isom R , S ( A , B ) ) |