This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite set of sequential integers is empty if the bounds are reversed. (Contributed by NM, 22-Aug-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzn | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( N < M <-> ( M ... N ) = (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzn0 | |- ( ( M ... N ) =/= (/) <-> N e. ( ZZ>= ` M ) ) |
|
| 2 | eluz | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` M ) <-> M <_ N ) ) |
|
| 3 | 1 2 | bitrid | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M ... N ) =/= (/) <-> M <_ N ) ) |
| 4 | zre | |- ( M e. ZZ -> M e. RR ) |
|
| 5 | zre | |- ( N e. ZZ -> N e. RR ) |
|
| 6 | lenlt | |- ( ( M e. RR /\ N e. RR ) -> ( M <_ N <-> -. N < M ) ) |
|
| 7 | 4 5 6 | syl2an | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M <_ N <-> -. N < M ) ) |
| 8 | 3 7 | bitr2d | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( -. N < M <-> ( M ... N ) =/= (/) ) ) |
| 9 | 8 | necon4bbid | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( N < M <-> ( M ... N ) = (/) ) ) |