This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If three real numbers are less than a fourth real number, the sum of the three real numbers is less than three times the third real number. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lt3addmuld.a | |- ( ph -> A e. RR ) |
|
| lt3addmuld.b | |- ( ph -> B e. RR ) |
||
| lt3addmuld.c | |- ( ph -> C e. RR ) |
||
| lt3addmuld.d | |- ( ph -> D e. RR ) |
||
| lt3addmuld.altd | |- ( ph -> A < D ) |
||
| lt3addmuld.bltd | |- ( ph -> B < D ) |
||
| lt3addmuld.cltd | |- ( ph -> C < D ) |
||
| Assertion | lt3addmuld | |- ( ph -> ( ( A + B ) + C ) < ( 3 x. D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lt3addmuld.a | |- ( ph -> A e. RR ) |
|
| 2 | lt3addmuld.b | |- ( ph -> B e. RR ) |
|
| 3 | lt3addmuld.c | |- ( ph -> C e. RR ) |
|
| 4 | lt3addmuld.d | |- ( ph -> D e. RR ) |
|
| 5 | lt3addmuld.altd | |- ( ph -> A < D ) |
|
| 6 | lt3addmuld.bltd | |- ( ph -> B < D ) |
|
| 7 | lt3addmuld.cltd | |- ( ph -> C < D ) |
|
| 8 | 1 2 | readdcld | |- ( ph -> ( A + B ) e. RR ) |
| 9 | 2re | |- 2 e. RR |
|
| 10 | 9 | a1i | |- ( ph -> 2 e. RR ) |
| 11 | 10 4 | remulcld | |- ( ph -> ( 2 x. D ) e. RR ) |
| 12 | 1 2 4 5 6 | lt2addmuld | |- ( ph -> ( A + B ) < ( 2 x. D ) ) |
| 13 | 8 3 11 4 12 7 | lt2addd | |- ( ph -> ( ( A + B ) + C ) < ( ( 2 x. D ) + D ) ) |
| 14 | 10 | recnd | |- ( ph -> 2 e. CC ) |
| 15 | 4 | recnd | |- ( ph -> D e. CC ) |
| 16 | 14 15 | adddirp1d | |- ( ph -> ( ( 2 + 1 ) x. D ) = ( ( 2 x. D ) + D ) ) |
| 17 | 2p1e3 | |- ( 2 + 1 ) = 3 |
|
| 18 | 17 | a1i | |- ( ph -> ( 2 + 1 ) = 3 ) |
| 19 | 18 | oveq1d | |- ( ph -> ( ( 2 + 1 ) x. D ) = ( 3 x. D ) ) |
| 20 | 16 19 | eqtr3d | |- ( ph -> ( ( 2 x. D ) + D ) = ( 3 x. D ) ) |
| 21 | 13 20 | breqtrd | |- ( ph -> ( ( A + B ) + C ) < ( 3 x. D ) ) |