This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the numeric cardinality of a nonempty integer range. (Contributed by Stefan O'Rear, 12-Sep-2014) (Proof shortened by Mario Carneiro, 15-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashfz | |- ( B e. ( ZZ>= ` A ) -> ( # ` ( A ... B ) ) = ( ( B - A ) + 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzel2 | |- ( B e. ( ZZ>= ` A ) -> A e. ZZ ) |
|
| 2 | eluzelz | |- ( B e. ( ZZ>= ` A ) -> B e. ZZ ) |
|
| 3 | 1z | |- 1 e. ZZ |
|
| 4 | zsubcl | |- ( ( 1 e. ZZ /\ A e. ZZ ) -> ( 1 - A ) e. ZZ ) |
|
| 5 | 3 1 4 | sylancr | |- ( B e. ( ZZ>= ` A ) -> ( 1 - A ) e. ZZ ) |
| 6 | fzen | |- ( ( A e. ZZ /\ B e. ZZ /\ ( 1 - A ) e. ZZ ) -> ( A ... B ) ~~ ( ( A + ( 1 - A ) ) ... ( B + ( 1 - A ) ) ) ) |
|
| 7 | 1 2 5 6 | syl3anc | |- ( B e. ( ZZ>= ` A ) -> ( A ... B ) ~~ ( ( A + ( 1 - A ) ) ... ( B + ( 1 - A ) ) ) ) |
| 8 | 1 | zcnd | |- ( B e. ( ZZ>= ` A ) -> A e. CC ) |
| 9 | ax-1cn | |- 1 e. CC |
|
| 10 | pncan3 | |- ( ( A e. CC /\ 1 e. CC ) -> ( A + ( 1 - A ) ) = 1 ) |
|
| 11 | 8 9 10 | sylancl | |- ( B e. ( ZZ>= ` A ) -> ( A + ( 1 - A ) ) = 1 ) |
| 12 | 1cnd | |- ( B e. ( ZZ>= ` A ) -> 1 e. CC ) |
|
| 13 | 2 | zcnd | |- ( B e. ( ZZ>= ` A ) -> B e. CC ) |
| 14 | 13 8 | subcld | |- ( B e. ( ZZ>= ` A ) -> ( B - A ) e. CC ) |
| 15 | 13 12 8 | addsub12d | |- ( B e. ( ZZ>= ` A ) -> ( B + ( 1 - A ) ) = ( 1 + ( B - A ) ) ) |
| 16 | 12 14 15 | comraddd | |- ( B e. ( ZZ>= ` A ) -> ( B + ( 1 - A ) ) = ( ( B - A ) + 1 ) ) |
| 17 | 11 16 | oveq12d | |- ( B e. ( ZZ>= ` A ) -> ( ( A + ( 1 - A ) ) ... ( B + ( 1 - A ) ) ) = ( 1 ... ( ( B - A ) + 1 ) ) ) |
| 18 | 7 17 | breqtrd | |- ( B e. ( ZZ>= ` A ) -> ( A ... B ) ~~ ( 1 ... ( ( B - A ) + 1 ) ) ) |
| 19 | hasheni | |- ( ( A ... B ) ~~ ( 1 ... ( ( B - A ) + 1 ) ) -> ( # ` ( A ... B ) ) = ( # ` ( 1 ... ( ( B - A ) + 1 ) ) ) ) |
|
| 20 | 18 19 | syl | |- ( B e. ( ZZ>= ` A ) -> ( # ` ( A ... B ) ) = ( # ` ( 1 ... ( ( B - A ) + 1 ) ) ) ) |
| 21 | uznn0sub | |- ( B e. ( ZZ>= ` A ) -> ( B - A ) e. NN0 ) |
|
| 22 | peano2nn0 | |- ( ( B - A ) e. NN0 -> ( ( B - A ) + 1 ) e. NN0 ) |
|
| 23 | hashfz1 | |- ( ( ( B - A ) + 1 ) e. NN0 -> ( # ` ( 1 ... ( ( B - A ) + 1 ) ) ) = ( ( B - A ) + 1 ) ) |
|
| 24 | 21 22 23 | 3syl | |- ( B e. ( ZZ>= ` A ) -> ( # ` ( 1 ... ( ( B - A ) + 1 ) ) ) = ( ( B - A ) + 1 ) ) |
| 25 | 20 24 | eqtrd | |- ( B e. ( ZZ>= ` A ) -> ( # ` ( A ... B ) ) = ( ( B - A ) + 1 ) ) |