This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of funcrngcsetc , using cofuval2 to construct the "natural forgetful functor" from the category of non-unital rings into the category of sets by composing the "inclusion functor" from the category of non-unital rings into the category of extensible structures, see rngcifuestrc , and the "natural forgetful functor" from the category of extensible structures into the category of sets, see funcestrcsetc . Surprisingly, this proof is longer than the direct proof given in funcrngcsetc . (Contributed by AV, 30-Mar-2020) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcrngcsetcALT.r | |- R = ( RngCat ` U ) |
|
| funcrngcsetcALT.s | |- S = ( SetCat ` U ) |
||
| funcrngcsetcALT.b | |- B = ( Base ` R ) |
||
| funcrngcsetcALT.u | |- ( ph -> U e. WUni ) |
||
| funcrngcsetcALT.f | |- ( ph -> F = ( x e. B |-> ( Base ` x ) ) ) |
||
| funcrngcsetcALT.g | |- ( ph -> G = ( x e. B , y e. B |-> ( _I |` ( x RngHom y ) ) ) ) |
||
| Assertion | funcrngcsetcALT | |- ( ph -> F ( R Func S ) G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcrngcsetcALT.r | |- R = ( RngCat ` U ) |
|
| 2 | funcrngcsetcALT.s | |- S = ( SetCat ` U ) |
|
| 3 | funcrngcsetcALT.b | |- B = ( Base ` R ) |
|
| 4 | funcrngcsetcALT.u | |- ( ph -> U e. WUni ) |
|
| 5 | funcrngcsetcALT.f | |- ( ph -> F = ( x e. B |-> ( Base ` x ) ) ) |
|
| 6 | funcrngcsetcALT.g | |- ( ph -> G = ( x e. B , y e. B |-> ( _I |` ( x RngHom y ) ) ) ) |
|
| 7 | fveq2 | |- ( x = u -> ( Base ` x ) = ( Base ` u ) ) |
|
| 8 | 7 | cbvmptv | |- ( x e. B |-> ( Base ` x ) ) = ( u e. B |-> ( Base ` u ) ) |
| 9 | 5 8 | eqtrdi | |- ( ph -> F = ( u e. B |-> ( Base ` u ) ) ) |
| 10 | coires1 | |- ( ( u e. U |-> ( Base ` u ) ) o. ( _I |` B ) ) = ( ( u e. U |-> ( Base ` u ) ) |` B ) |
|
| 11 | 1 3 4 | rngcbas | |- ( ph -> B = ( U i^i Rng ) ) |
| 12 | 11 | eleq2d | |- ( ph -> ( x e. B <-> x e. ( U i^i Rng ) ) ) |
| 13 | elin | |- ( x e. ( U i^i Rng ) <-> ( x e. U /\ x e. Rng ) ) |
|
| 14 | 13 | simplbi | |- ( x e. ( U i^i Rng ) -> x e. U ) |
| 15 | 12 14 | biimtrdi | |- ( ph -> ( x e. B -> x e. U ) ) |
| 16 | 15 | ssrdv | |- ( ph -> B C_ U ) |
| 17 | 16 | resmptd | |- ( ph -> ( ( u e. U |-> ( Base ` u ) ) |` B ) = ( u e. B |-> ( Base ` u ) ) ) |
| 18 | 10 17 | eqtr2id | |- ( ph -> ( u e. B |-> ( Base ` u ) ) = ( ( u e. U |-> ( Base ` u ) ) o. ( _I |` B ) ) ) |
| 19 | 9 18 | eqtrd | |- ( ph -> F = ( ( u e. U |-> ( Base ` u ) ) o. ( _I |` B ) ) ) |
| 20 | coires1 | |- ( ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) o. ( _I |` ( x RngHom y ) ) ) = ( ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) |` ( x RngHom y ) ) |
|
| 21 | eqid | |- ( Base ` x ) = ( Base ` x ) |
|
| 22 | eqid | |- ( Base ` y ) = ( Base ` y ) |
|
| 23 | 21 22 | rnghmf | |- ( z e. ( x RngHom y ) -> z : ( Base ` x ) --> ( Base ` y ) ) |
| 24 | fvex | |- ( Base ` y ) e. _V |
|
| 25 | fvex | |- ( Base ` x ) e. _V |
|
| 26 | 24 25 | pm3.2i | |- ( ( Base ` y ) e. _V /\ ( Base ` x ) e. _V ) |
| 27 | elmapg | |- ( ( ( Base ` y ) e. _V /\ ( Base ` x ) e. _V ) -> ( z e. ( ( Base ` y ) ^m ( Base ` x ) ) <-> z : ( Base ` x ) --> ( Base ` y ) ) ) |
|
| 28 | 26 27 | mp1i | |- ( ( ph /\ x e. B /\ y e. B ) -> ( z e. ( ( Base ` y ) ^m ( Base ` x ) ) <-> z : ( Base ` x ) --> ( Base ` y ) ) ) |
| 29 | 23 28 | imbitrrid | |- ( ( ph /\ x e. B /\ y e. B ) -> ( z e. ( x RngHom y ) -> z e. ( ( Base ` y ) ^m ( Base ` x ) ) ) ) |
| 30 | 29 | ssrdv | |- ( ( ph /\ x e. B /\ y e. B ) -> ( x RngHom y ) C_ ( ( Base ` y ) ^m ( Base ` x ) ) ) |
| 31 | 30 | resabs1d | |- ( ( ph /\ x e. B /\ y e. B ) -> ( ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) |` ( x RngHom y ) ) = ( _I |` ( x RngHom y ) ) ) |
| 32 | 20 31 | eqtr2id | |- ( ( ph /\ x e. B /\ y e. B ) -> ( _I |` ( x RngHom y ) ) = ( ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) o. ( _I |` ( x RngHom y ) ) ) ) |
| 33 | 32 | mpoeq3dva | |- ( ph -> ( x e. B , y e. B |-> ( _I |` ( x RngHom y ) ) ) = ( x e. B , y e. B |-> ( ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) o. ( _I |` ( x RngHom y ) ) ) ) ) |
| 34 | 6 33 | eqtrd | |- ( ph -> G = ( x e. B , y e. B |-> ( ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) o. ( _I |` ( x RngHom y ) ) ) ) ) |
| 35 | 3 | a1i | |- ( ph -> B = ( Base ` R ) ) |
| 36 | 3 | a1i | |- ( ( ph /\ x e. B ) -> B = ( Base ` R ) ) |
| 37 | fvresi | |- ( x e. B -> ( ( _I |` B ) ` x ) = x ) |
|
| 38 | 37 | adantr | |- ( ( x e. B /\ y e. B ) -> ( ( _I |` B ) ` x ) = x ) |
| 39 | 38 | adantl | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( ( _I |` B ) ` x ) = x ) |
| 40 | fvresi | |- ( y e. B -> ( ( _I |` B ) ` y ) = y ) |
|
| 41 | 40 | adantl | |- ( ( x e. B /\ y e. B ) -> ( ( _I |` B ) ` y ) = y ) |
| 42 | 41 | adantl | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( ( _I |` B ) ` y ) = y ) |
| 43 | 39 42 | oveq12d | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( ( ( _I |` B ) ` x ) ( w e. U , z e. U |-> ( _I |` ( ( Base ` z ) ^m ( Base ` w ) ) ) ) ( ( _I |` B ) ` y ) ) = ( x ( w e. U , z e. U |-> ( _I |` ( ( Base ` z ) ^m ( Base ` w ) ) ) ) y ) ) |
| 44 | eqidd | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( w e. U , z e. U |-> ( _I |` ( ( Base ` z ) ^m ( Base ` w ) ) ) ) = ( w e. U , z e. U |-> ( _I |` ( ( Base ` z ) ^m ( Base ` w ) ) ) ) ) |
|
| 45 | simprr | |- ( ( ( ph /\ ( x e. B /\ y e. B ) ) /\ ( w = x /\ z = y ) ) -> z = y ) |
|
| 46 | 45 | fveq2d | |- ( ( ( ph /\ ( x e. B /\ y e. B ) ) /\ ( w = x /\ z = y ) ) -> ( Base ` z ) = ( Base ` y ) ) |
| 47 | simprl | |- ( ( ( ph /\ ( x e. B /\ y e. B ) ) /\ ( w = x /\ z = y ) ) -> w = x ) |
|
| 48 | 47 | fveq2d | |- ( ( ( ph /\ ( x e. B /\ y e. B ) ) /\ ( w = x /\ z = y ) ) -> ( Base ` w ) = ( Base ` x ) ) |
| 49 | 46 48 | oveq12d | |- ( ( ( ph /\ ( x e. B /\ y e. B ) ) /\ ( w = x /\ z = y ) ) -> ( ( Base ` z ) ^m ( Base ` w ) ) = ( ( Base ` y ) ^m ( Base ` x ) ) ) |
| 50 | 49 | reseq2d | |- ( ( ( ph /\ ( x e. B /\ y e. B ) ) /\ ( w = x /\ z = y ) ) -> ( _I |` ( ( Base ` z ) ^m ( Base ` w ) ) ) = ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) |
| 51 | 15 | com12 | |- ( x e. B -> ( ph -> x e. U ) ) |
| 52 | 51 | adantr | |- ( ( x e. B /\ y e. B ) -> ( ph -> x e. U ) ) |
| 53 | 52 | impcom | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> x e. U ) |
| 54 | 11 | eleq2d | |- ( ph -> ( y e. B <-> y e. ( U i^i Rng ) ) ) |
| 55 | elin | |- ( y e. ( U i^i Rng ) <-> ( y e. U /\ y e. Rng ) ) |
|
| 56 | 55 | simplbi | |- ( y e. ( U i^i Rng ) -> y e. U ) |
| 57 | 54 56 | biimtrdi | |- ( ph -> ( y e. B -> y e. U ) ) |
| 58 | 57 | a1d | |- ( ph -> ( x e. B -> ( y e. B -> y e. U ) ) ) |
| 59 | 58 | imp32 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> y e. U ) |
| 60 | ovex | |- ( ( Base ` y ) ^m ( Base ` x ) ) e. _V |
|
| 61 | 60 | a1i | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( ( Base ` y ) ^m ( Base ` x ) ) e. _V ) |
| 62 | 61 | resiexd | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) e. _V ) |
| 63 | 44 50 53 59 62 | ovmpod | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( w e. U , z e. U |-> ( _I |` ( ( Base ` z ) ^m ( Base ` w ) ) ) ) y ) = ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) |
| 64 | 43 63 | eqtr2d | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) = ( ( ( _I |` B ) ` x ) ( w e. U , z e. U |-> ( _I |` ( ( Base ` z ) ^m ( Base ` w ) ) ) ) ( ( _I |` B ) ` y ) ) ) |
| 65 | eqidd | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( f e. B , g e. B |-> ( _I |` ( f RngHom g ) ) ) = ( f e. B , g e. B |-> ( _I |` ( f RngHom g ) ) ) ) |
|
| 66 | oveq12 | |- ( ( f = x /\ g = y ) -> ( f RngHom g ) = ( x RngHom y ) ) |
|
| 67 | 66 | reseq2d | |- ( ( f = x /\ g = y ) -> ( _I |` ( f RngHom g ) ) = ( _I |` ( x RngHom y ) ) ) |
| 68 | 67 | adantl | |- ( ( ( ph /\ ( x e. B /\ y e. B ) ) /\ ( f = x /\ g = y ) ) -> ( _I |` ( f RngHom g ) ) = ( _I |` ( x RngHom y ) ) ) |
| 69 | simprl | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> x e. B ) |
|
| 70 | simprr | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> y e. B ) |
|
| 71 | ovex | |- ( x RngHom y ) e. _V |
|
| 72 | 71 | a1i | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x RngHom y ) e. _V ) |
| 73 | 72 | resiexd | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( _I |` ( x RngHom y ) ) e. _V ) |
| 74 | 65 68 69 70 73 | ovmpod | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( f e. B , g e. B |-> ( _I |` ( f RngHom g ) ) ) y ) = ( _I |` ( x RngHom y ) ) ) |
| 75 | 74 | eqcomd | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( _I |` ( x RngHom y ) ) = ( x ( f e. B , g e. B |-> ( _I |` ( f RngHom g ) ) ) y ) ) |
| 76 | 64 75 | coeq12d | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) o. ( _I |` ( x RngHom y ) ) ) = ( ( ( ( _I |` B ) ` x ) ( w e. U , z e. U |-> ( _I |` ( ( Base ` z ) ^m ( Base ` w ) ) ) ) ( ( _I |` B ) ` y ) ) o. ( x ( f e. B , g e. B |-> ( _I |` ( f RngHom g ) ) ) y ) ) ) |
| 77 | 35 36 76 | mpoeq123dva | |- ( ph -> ( x e. B , y e. B |-> ( ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) o. ( _I |` ( x RngHom y ) ) ) ) = ( x e. ( Base ` R ) , y e. ( Base ` R ) |-> ( ( ( ( _I |` B ) ` x ) ( w e. U , z e. U |-> ( _I |` ( ( Base ` z ) ^m ( Base ` w ) ) ) ) ( ( _I |` B ) ` y ) ) o. ( x ( f e. B , g e. B |-> ( _I |` ( f RngHom g ) ) ) y ) ) ) ) |
| 78 | 34 77 | eqtrd | |- ( ph -> G = ( x e. ( Base ` R ) , y e. ( Base ` R ) |-> ( ( ( ( _I |` B ) ` x ) ( w e. U , z e. U |-> ( _I |` ( ( Base ` z ) ^m ( Base ` w ) ) ) ) ( ( _I |` B ) ` y ) ) o. ( x ( f e. B , g e. B |-> ( _I |` ( f RngHom g ) ) ) y ) ) ) ) |
| 79 | 19 78 | opeq12d | |- ( ph -> <. F , G >. = <. ( ( u e. U |-> ( Base ` u ) ) o. ( _I |` B ) ) , ( x e. ( Base ` R ) , y e. ( Base ` R ) |-> ( ( ( ( _I |` B ) ` x ) ( w e. U , z e. U |-> ( _I |` ( ( Base ` z ) ^m ( Base ` w ) ) ) ) ( ( _I |` B ) ` y ) ) o. ( x ( f e. B , g e. B |-> ( _I |` ( f RngHom g ) ) ) y ) ) ) >. ) |
| 80 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 81 | eqid | |- ( ExtStrCat ` U ) = ( ExtStrCat ` U ) |
|
| 82 | eqidd | |- ( ph -> ( _I |` B ) = ( _I |` B ) ) |
|
| 83 | eqidd | |- ( ph -> ( f e. B , g e. B |-> ( _I |` ( f RngHom g ) ) ) = ( f e. B , g e. B |-> ( _I |` ( f RngHom g ) ) ) ) |
|
| 84 | 1 81 3 4 82 83 | rngcifuestrc | |- ( ph -> ( _I |` B ) ( R Func ( ExtStrCat ` U ) ) ( f e. B , g e. B |-> ( _I |` ( f RngHom g ) ) ) ) |
| 85 | eqid | |- ( Base ` ( ExtStrCat ` U ) ) = ( Base ` ( ExtStrCat ` U ) ) |
|
| 86 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 87 | 81 4 | estrcbas | |- ( ph -> U = ( Base ` ( ExtStrCat ` U ) ) ) |
| 88 | 87 | mpteq1d | |- ( ph -> ( u e. U |-> ( Base ` u ) ) = ( u e. ( Base ` ( ExtStrCat ` U ) ) |-> ( Base ` u ) ) ) |
| 89 | fveq2 | |- ( w = u -> ( Base ` w ) = ( Base ` u ) ) |
|
| 90 | 89 | oveq2d | |- ( w = u -> ( ( Base ` z ) ^m ( Base ` w ) ) = ( ( Base ` z ) ^m ( Base ` u ) ) ) |
| 91 | 90 | reseq2d | |- ( w = u -> ( _I |` ( ( Base ` z ) ^m ( Base ` w ) ) ) = ( _I |` ( ( Base ` z ) ^m ( Base ` u ) ) ) ) |
| 92 | fveq2 | |- ( z = v -> ( Base ` z ) = ( Base ` v ) ) |
|
| 93 | 92 | oveq1d | |- ( z = v -> ( ( Base ` z ) ^m ( Base ` u ) ) = ( ( Base ` v ) ^m ( Base ` u ) ) ) |
| 94 | 93 | reseq2d | |- ( z = v -> ( _I |` ( ( Base ` z ) ^m ( Base ` u ) ) ) = ( _I |` ( ( Base ` v ) ^m ( Base ` u ) ) ) ) |
| 95 | 91 94 | cbvmpov | |- ( w e. U , z e. U |-> ( _I |` ( ( Base ` z ) ^m ( Base ` w ) ) ) ) = ( u e. U , v e. U |-> ( _I |` ( ( Base ` v ) ^m ( Base ` u ) ) ) ) |
| 96 | 95 | a1i | |- ( ph -> ( w e. U , z e. U |-> ( _I |` ( ( Base ` z ) ^m ( Base ` w ) ) ) ) = ( u e. U , v e. U |-> ( _I |` ( ( Base ` v ) ^m ( Base ` u ) ) ) ) ) |
| 97 | eqidd | |- ( ph -> ( _I |` ( ( Base ` v ) ^m ( Base ` u ) ) ) = ( _I |` ( ( Base ` v ) ^m ( Base ` u ) ) ) ) |
|
| 98 | 87 87 97 | mpoeq123dv | |- ( ph -> ( u e. U , v e. U |-> ( _I |` ( ( Base ` v ) ^m ( Base ` u ) ) ) ) = ( u e. ( Base ` ( ExtStrCat ` U ) ) , v e. ( Base ` ( ExtStrCat ` U ) ) |-> ( _I |` ( ( Base ` v ) ^m ( Base ` u ) ) ) ) ) |
| 99 | 96 98 | eqtrd | |- ( ph -> ( w e. U , z e. U |-> ( _I |` ( ( Base ` z ) ^m ( Base ` w ) ) ) ) = ( u e. ( Base ` ( ExtStrCat ` U ) ) , v e. ( Base ` ( ExtStrCat ` U ) ) |-> ( _I |` ( ( Base ` v ) ^m ( Base ` u ) ) ) ) ) |
| 100 | 81 2 85 86 4 88 99 | funcestrcsetc | |- ( ph -> ( u e. U |-> ( Base ` u ) ) ( ( ExtStrCat ` U ) Func S ) ( w e. U , z e. U |-> ( _I |` ( ( Base ` z ) ^m ( Base ` w ) ) ) ) ) |
| 101 | 80 84 100 | cofuval2 | |- ( ph -> ( <. ( u e. U |-> ( Base ` u ) ) , ( w e. U , z e. U |-> ( _I |` ( ( Base ` z ) ^m ( Base ` w ) ) ) ) >. o.func <. ( _I |` B ) , ( f e. B , g e. B |-> ( _I |` ( f RngHom g ) ) ) >. ) = <. ( ( u e. U |-> ( Base ` u ) ) o. ( _I |` B ) ) , ( x e. ( Base ` R ) , y e. ( Base ` R ) |-> ( ( ( ( _I |` B ) ` x ) ( w e. U , z e. U |-> ( _I |` ( ( Base ` z ) ^m ( Base ` w ) ) ) ) ( ( _I |` B ) ` y ) ) o. ( x ( f e. B , g e. B |-> ( _I |` ( f RngHom g ) ) ) y ) ) ) >. ) |
| 102 | 79 101 | eqtr4d | |- ( ph -> <. F , G >. = ( <. ( u e. U |-> ( Base ` u ) ) , ( w e. U , z e. U |-> ( _I |` ( ( Base ` z ) ^m ( Base ` w ) ) ) ) >. o.func <. ( _I |` B ) , ( f e. B , g e. B |-> ( _I |` ( f RngHom g ) ) ) >. ) ) |
| 103 | df-br | |- ( ( _I |` B ) ( R Func ( ExtStrCat ` U ) ) ( f e. B , g e. B |-> ( _I |` ( f RngHom g ) ) ) <-> <. ( _I |` B ) , ( f e. B , g e. B |-> ( _I |` ( f RngHom g ) ) ) >. e. ( R Func ( ExtStrCat ` U ) ) ) |
|
| 104 | 84 103 | sylib | |- ( ph -> <. ( _I |` B ) , ( f e. B , g e. B |-> ( _I |` ( f RngHom g ) ) ) >. e. ( R Func ( ExtStrCat ` U ) ) ) |
| 105 | df-br | |- ( ( u e. U |-> ( Base ` u ) ) ( ( ExtStrCat ` U ) Func S ) ( w e. U , z e. U |-> ( _I |` ( ( Base ` z ) ^m ( Base ` w ) ) ) ) <-> <. ( u e. U |-> ( Base ` u ) ) , ( w e. U , z e. U |-> ( _I |` ( ( Base ` z ) ^m ( Base ` w ) ) ) ) >. e. ( ( ExtStrCat ` U ) Func S ) ) |
|
| 106 | 100 105 | sylib | |- ( ph -> <. ( u e. U |-> ( Base ` u ) ) , ( w e. U , z e. U |-> ( _I |` ( ( Base ` z ) ^m ( Base ` w ) ) ) ) >. e. ( ( ExtStrCat ` U ) Func S ) ) |
| 107 | 104 106 | cofucl | |- ( ph -> ( <. ( u e. U |-> ( Base ` u ) ) , ( w e. U , z e. U |-> ( _I |` ( ( Base ` z ) ^m ( Base ` w ) ) ) ) >. o.func <. ( _I |` B ) , ( f e. B , g e. B |-> ( _I |` ( f RngHom g ) ) ) >. ) e. ( R Func S ) ) |
| 108 | 102 107 | eqeltrd | |- ( ph -> <. F , G >. e. ( R Func S ) ) |
| 109 | df-br | |- ( F ( R Func S ) G <-> <. F , G >. e. ( R Func S ) ) |
|
| 110 | 108 109 | sylibr | |- ( ph -> F ( R Func S ) G ) |