This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero ring is an initial object in the category of non-unital rings. (Contributed by AV, 18-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zrinitorngc.u | |- ( ph -> U e. V ) |
|
| zrinitorngc.c | |- C = ( RngCat ` U ) |
||
| zrinitorngc.z | |- ( ph -> Z e. ( Ring \ NzRing ) ) |
||
| zrinitorngc.e | |- ( ph -> Z e. U ) |
||
| Assertion | zrinitorngc | |- ( ph -> Z e. ( InitO ` C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrinitorngc.u | |- ( ph -> U e. V ) |
|
| 2 | zrinitorngc.c | |- C = ( RngCat ` U ) |
|
| 3 | zrinitorngc.z | |- ( ph -> Z e. ( Ring \ NzRing ) ) |
|
| 4 | zrinitorngc.e | |- ( ph -> Z e. U ) |
|
| 5 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 6 | 2 5 1 | rngcbas | |- ( ph -> ( Base ` C ) = ( U i^i Rng ) ) |
| 7 | 6 | eleq2d | |- ( ph -> ( r e. ( Base ` C ) <-> r e. ( U i^i Rng ) ) ) |
| 8 | elin | |- ( r e. ( U i^i Rng ) <-> ( r e. U /\ r e. Rng ) ) |
|
| 9 | 8 | simprbi | |- ( r e. ( U i^i Rng ) -> r e. Rng ) |
| 10 | 7 9 | biimtrdi | |- ( ph -> ( r e. ( Base ` C ) -> r e. Rng ) ) |
| 11 | 10 | imp | |- ( ( ph /\ r e. ( Base ` C ) ) -> r e. Rng ) |
| 12 | 3 | adantr | |- ( ( ph /\ r e. ( Base ` C ) ) -> Z e. ( Ring \ NzRing ) ) |
| 13 | eqid | |- ( Base ` Z ) = ( Base ` Z ) |
|
| 14 | eqid | |- ( 0g ` r ) = ( 0g ` r ) |
|
| 15 | eqid | |- ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) = ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) |
|
| 16 | 13 14 15 | zrrnghm | |- ( ( r e. Rng /\ Z e. ( Ring \ NzRing ) ) -> ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) e. ( Z RngHom r ) ) |
| 17 | 11 12 16 | syl2anc | |- ( ( ph /\ r e. ( Base ` C ) ) -> ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) e. ( Z RngHom r ) ) |
| 18 | simpr | |- ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) e. ( Z RngHom r ) ) -> ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) e. ( Z RngHom r ) ) |
|
| 19 | 1 | adantr | |- ( ( ph /\ r e. ( Base ` C ) ) -> U e. V ) |
| 20 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 21 | eldifi | |- ( Z e. ( Ring \ NzRing ) -> Z e. Ring ) |
|
| 22 | ringrng | |- ( Z e. Ring -> Z e. Rng ) |
|
| 23 | 3 21 22 | 3syl | |- ( ph -> Z e. Rng ) |
| 24 | 4 23 | elind | |- ( ph -> Z e. ( U i^i Rng ) ) |
| 25 | 24 6 | eleqtrrd | |- ( ph -> Z e. ( Base ` C ) ) |
| 26 | 25 | adantr | |- ( ( ph /\ r e. ( Base ` C ) ) -> Z e. ( Base ` C ) ) |
| 27 | simpr | |- ( ( ph /\ r e. ( Base ` C ) ) -> r e. ( Base ` C ) ) |
|
| 28 | 2 5 19 20 26 27 | rngchom | |- ( ( ph /\ r e. ( Base ` C ) ) -> ( Z ( Hom ` C ) r ) = ( Z RngHom r ) ) |
| 29 | 28 | eqcomd | |- ( ( ph /\ r e. ( Base ` C ) ) -> ( Z RngHom r ) = ( Z ( Hom ` C ) r ) ) |
| 30 | 29 | eleq2d | |- ( ( ph /\ r e. ( Base ` C ) ) -> ( ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) e. ( Z RngHom r ) <-> ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) e. ( Z ( Hom ` C ) r ) ) ) |
| 31 | 30 | biimpa | |- ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) e. ( Z RngHom r ) ) -> ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) e. ( Z ( Hom ` C ) r ) ) |
| 32 | 28 | eleq2d | |- ( ( ph /\ r e. ( Base ` C ) ) -> ( h e. ( Z ( Hom ` C ) r ) <-> h e. ( Z RngHom r ) ) ) |
| 33 | eqid | |- ( Base ` r ) = ( Base ` r ) |
|
| 34 | 13 33 | rnghmf | |- ( h e. ( Z RngHom r ) -> h : ( Base ` Z ) --> ( Base ` r ) ) |
| 35 | 32 34 | biimtrdi | |- ( ( ph /\ r e. ( Base ` C ) ) -> ( h e. ( Z ( Hom ` C ) r ) -> h : ( Base ` Z ) --> ( Base ` r ) ) ) |
| 36 | 35 | imp | |- ( ( ( ph /\ r e. ( Base ` C ) ) /\ h e. ( Z ( Hom ` C ) r ) ) -> h : ( Base ` Z ) --> ( Base ` r ) ) |
| 37 | ffn | |- ( h : ( Base ` Z ) --> ( Base ` r ) -> h Fn ( Base ` Z ) ) |
|
| 38 | 37 | adantl | |- ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ h e. ( Z ( Hom ` C ) r ) ) /\ h : ( Base ` Z ) --> ( Base ` r ) ) -> h Fn ( Base ` Z ) ) |
| 39 | fvex | |- ( 0g ` r ) e. _V |
|
| 40 | 39 15 | fnmpti | |- ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) Fn ( Base ` Z ) |
| 41 | 40 | a1i | |- ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ h e. ( Z ( Hom ` C ) r ) ) /\ h : ( Base ` Z ) --> ( Base ` r ) ) -> ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) Fn ( Base ` Z ) ) |
| 42 | 32 | biimpa | |- ( ( ( ph /\ r e. ( Base ` C ) ) /\ h e. ( Z ( Hom ` C ) r ) ) -> h e. ( Z RngHom r ) ) |
| 43 | rnghmghm | |- ( h e. ( Z RngHom r ) -> h e. ( Z GrpHom r ) ) |
|
| 44 | eqid | |- ( 0g ` Z ) = ( 0g ` Z ) |
|
| 45 | 44 14 | ghmid | |- ( h e. ( Z GrpHom r ) -> ( h ` ( 0g ` Z ) ) = ( 0g ` r ) ) |
| 46 | 42 43 45 | 3syl | |- ( ( ( ph /\ r e. ( Base ` C ) ) /\ h e. ( Z ( Hom ` C ) r ) ) -> ( h ` ( 0g ` Z ) ) = ( 0g ` r ) ) |
| 47 | 46 | ad2antrr | |- ( ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ h e. ( Z ( Hom ` C ) r ) ) /\ h : ( Base ` Z ) --> ( Base ` r ) ) /\ a e. ( Base ` Z ) ) -> ( h ` ( 0g ` Z ) ) = ( 0g ` r ) ) |
| 48 | 13 44 | 0ringbas | |- ( Z e. ( Ring \ NzRing ) -> ( Base ` Z ) = { ( 0g ` Z ) } ) |
| 49 | 3 48 | syl | |- ( ph -> ( Base ` Z ) = { ( 0g ` Z ) } ) |
| 50 | 49 | eleq2d | |- ( ph -> ( a e. ( Base ` Z ) <-> a e. { ( 0g ` Z ) } ) ) |
| 51 | elsni | |- ( a e. { ( 0g ` Z ) } -> a = ( 0g ` Z ) ) |
|
| 52 | 51 | fveq2d | |- ( a e. { ( 0g ` Z ) } -> ( h ` a ) = ( h ` ( 0g ` Z ) ) ) |
| 53 | 50 52 | biimtrdi | |- ( ph -> ( a e. ( Base ` Z ) -> ( h ` a ) = ( h ` ( 0g ` Z ) ) ) ) |
| 54 | 53 | adantr | |- ( ( ph /\ r e. ( Base ` C ) ) -> ( a e. ( Base ` Z ) -> ( h ` a ) = ( h ` ( 0g ` Z ) ) ) ) |
| 55 | 54 | ad2antrr | |- ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ h e. ( Z ( Hom ` C ) r ) ) /\ h : ( Base ` Z ) --> ( Base ` r ) ) -> ( a e. ( Base ` Z ) -> ( h ` a ) = ( h ` ( 0g ` Z ) ) ) ) |
| 56 | 55 | imp | |- ( ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ h e. ( Z ( Hom ` C ) r ) ) /\ h : ( Base ` Z ) --> ( Base ` r ) ) /\ a e. ( Base ` Z ) ) -> ( h ` a ) = ( h ` ( 0g ` Z ) ) ) |
| 57 | eqidd | |- ( a e. ( Base ` Z ) -> ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) = ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) ) |
|
| 58 | eqidd | |- ( ( a e. ( Base ` Z ) /\ x = a ) -> ( 0g ` r ) = ( 0g ` r ) ) |
|
| 59 | id | |- ( a e. ( Base ` Z ) -> a e. ( Base ` Z ) ) |
|
| 60 | 39 | a1i | |- ( a e. ( Base ` Z ) -> ( 0g ` r ) e. _V ) |
| 61 | 57 58 59 60 | fvmptd | |- ( a e. ( Base ` Z ) -> ( ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) ` a ) = ( 0g ` r ) ) |
| 62 | 61 | adantl | |- ( ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ h e. ( Z ( Hom ` C ) r ) ) /\ h : ( Base ` Z ) --> ( Base ` r ) ) /\ a e. ( Base ` Z ) ) -> ( ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) ` a ) = ( 0g ` r ) ) |
| 63 | 47 56 62 | 3eqtr4d | |- ( ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ h e. ( Z ( Hom ` C ) r ) ) /\ h : ( Base ` Z ) --> ( Base ` r ) ) /\ a e. ( Base ` Z ) ) -> ( h ` a ) = ( ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) ` a ) ) |
| 64 | 38 41 63 | eqfnfvd | |- ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ h e. ( Z ( Hom ` C ) r ) ) /\ h : ( Base ` Z ) --> ( Base ` r ) ) -> h = ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) ) |
| 65 | 36 64 | mpdan | |- ( ( ( ph /\ r e. ( Base ` C ) ) /\ h e. ( Z ( Hom ` C ) r ) ) -> h = ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) ) |
| 66 | 65 | ex | |- ( ( ph /\ r e. ( Base ` C ) ) -> ( h e. ( Z ( Hom ` C ) r ) -> h = ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) ) ) |
| 67 | 66 | adantr | |- ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) e. ( Z RngHom r ) ) -> ( h e. ( Z ( Hom ` C ) r ) -> h = ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) ) ) |
| 68 | 67 | alrimiv | |- ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) e. ( Z RngHom r ) ) -> A. h ( h e. ( Z ( Hom ` C ) r ) -> h = ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) ) ) |
| 69 | 18 31 68 | 3jca | |- ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) e. ( Z RngHom r ) ) -> ( ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) e. ( Z RngHom r ) /\ ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) e. ( Z ( Hom ` C ) r ) /\ A. h ( h e. ( Z ( Hom ` C ) r ) -> h = ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) ) ) ) |
| 70 | 17 69 | mpdan | |- ( ( ph /\ r e. ( Base ` C ) ) -> ( ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) e. ( Z RngHom r ) /\ ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) e. ( Z ( Hom ` C ) r ) /\ A. h ( h e. ( Z ( Hom ` C ) r ) -> h = ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) ) ) ) |
| 71 | eleq1 | |- ( h = ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) -> ( h e. ( Z ( Hom ` C ) r ) <-> ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) e. ( Z ( Hom ` C ) r ) ) ) |
|
| 72 | 71 | eqeu | |- ( ( ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) e. ( Z RngHom r ) /\ ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) e. ( Z ( Hom ` C ) r ) /\ A. h ( h e. ( Z ( Hom ` C ) r ) -> h = ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) ) ) -> E! h h e. ( Z ( Hom ` C ) r ) ) |
| 73 | 70 72 | syl | |- ( ( ph /\ r e. ( Base ` C ) ) -> E! h h e. ( Z ( Hom ` C ) r ) ) |
| 74 | 73 | ralrimiva | |- ( ph -> A. r e. ( Base ` C ) E! h h e. ( Z ( Hom ` C ) r ) ) |
| 75 | 2 | rngccat | |- ( U e. V -> C e. Cat ) |
| 76 | 1 75 | syl | |- ( ph -> C e. Cat ) |
| 77 | 5 20 76 25 | isinito | |- ( ph -> ( Z e. ( InitO ` C ) <-> A. r e. ( Base ` C ) E! h h e. ( Z ( Hom ` C ) r ) ) ) |
| 78 | 74 77 | mpbird | |- ( ph -> Z e. ( InitO ` C ) ) |