This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The "inclusion functor" from the category of non-unital rings into the category of extensible structures. (Contributed by AV, 30-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngcifuestrc.r | |- R = ( RngCat ` U ) |
|
| rngcifuestrc.e | |- E = ( ExtStrCat ` U ) |
||
| rngcifuestrc.b | |- B = ( Base ` R ) |
||
| rngcifuestrc.u | |- ( ph -> U e. V ) |
||
| rngcifuestrc.f | |- ( ph -> F = ( _I |` B ) ) |
||
| rngcifuestrc.g | |- ( ph -> G = ( x e. B , y e. B |-> ( _I |` ( x RngHom y ) ) ) ) |
||
| Assertion | rngcifuestrc | |- ( ph -> F ( R Func E ) G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngcifuestrc.r | |- R = ( RngCat ` U ) |
|
| 2 | rngcifuestrc.e | |- E = ( ExtStrCat ` U ) |
|
| 3 | rngcifuestrc.b | |- B = ( Base ` R ) |
|
| 4 | rngcifuestrc.u | |- ( ph -> U e. V ) |
|
| 5 | rngcifuestrc.f | |- ( ph -> F = ( _I |` B ) ) |
|
| 6 | rngcifuestrc.g | |- ( ph -> G = ( x e. B , y e. B |-> ( _I |` ( x RngHom y ) ) ) ) |
|
| 7 | eqid | |- ( ExtStrCat ` U ) = ( ExtStrCat ` U ) |
|
| 8 | 1 3 4 | rngcbas | |- ( ph -> B = ( U i^i Rng ) ) |
| 9 | incom | |- ( U i^i Rng ) = ( Rng i^i U ) |
|
| 10 | 8 9 | eqtrdi | |- ( ph -> B = ( Rng i^i U ) ) |
| 11 | eqid | |- ( Hom ` R ) = ( Hom ` R ) |
|
| 12 | 1 3 4 11 | rngchomfval | |- ( ph -> ( Hom ` R ) = ( RngHom |` ( B X. B ) ) ) |
| 13 | 7 4 10 12 | rnghmsubcsetc | |- ( ph -> ( Hom ` R ) e. ( Subcat ` ( ExtStrCat ` U ) ) ) |
| 14 | eqid | |- ( ( ExtStrCat ` U ) |`cat ( Hom ` R ) ) = ( ( ExtStrCat ` U ) |`cat ( Hom ` R ) ) |
|
| 15 | eqid | |- ( Base ` ( ( ExtStrCat ` U ) |`cat ( Hom ` R ) ) ) = ( Base ` ( ( ExtStrCat ` U ) |`cat ( Hom ` R ) ) ) |
|
| 16 | 1 4 8 12 | rngcval | |- ( ph -> R = ( ( ExtStrCat ` U ) |`cat ( Hom ` R ) ) ) |
| 17 | 16 | fveq2d | |- ( ph -> ( Base ` R ) = ( Base ` ( ( ExtStrCat ` U ) |`cat ( Hom ` R ) ) ) ) |
| 18 | 3 17 | eqtrid | |- ( ph -> B = ( Base ` ( ( ExtStrCat ` U ) |`cat ( Hom ` R ) ) ) ) |
| 19 | 18 | reseq2d | |- ( ph -> ( _I |` B ) = ( _I |` ( Base ` ( ( ExtStrCat ` U ) |`cat ( Hom ` R ) ) ) ) ) |
| 20 | 5 19 | eqtrd | |- ( ph -> F = ( _I |` ( Base ` ( ( ExtStrCat ` U ) |`cat ( Hom ` R ) ) ) ) ) |
| 21 | 18 | adantr | |- ( ( ph /\ x e. B ) -> B = ( Base ` ( ( ExtStrCat ` U ) |`cat ( Hom ` R ) ) ) ) |
| 22 | 12 | oveqdr | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( Hom ` R ) y ) = ( x ( RngHom |` ( B X. B ) ) y ) ) |
| 23 | ovres | |- ( ( x e. B /\ y e. B ) -> ( x ( RngHom |` ( B X. B ) ) y ) = ( x RngHom y ) ) |
|
| 24 | 23 | adantl | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( RngHom |` ( B X. B ) ) y ) = ( x RngHom y ) ) |
| 25 | 22 24 | eqtr2d | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x RngHom y ) = ( x ( Hom ` R ) y ) ) |
| 26 | 25 | reseq2d | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( _I |` ( x RngHom y ) ) = ( _I |` ( x ( Hom ` R ) y ) ) ) |
| 27 | 18 21 26 | mpoeq123dva | |- ( ph -> ( x e. B , y e. B |-> ( _I |` ( x RngHom y ) ) ) = ( x e. ( Base ` ( ( ExtStrCat ` U ) |`cat ( Hom ` R ) ) ) , y e. ( Base ` ( ( ExtStrCat ` U ) |`cat ( Hom ` R ) ) ) |-> ( _I |` ( x ( Hom ` R ) y ) ) ) ) |
| 28 | 6 27 | eqtrd | |- ( ph -> G = ( x e. ( Base ` ( ( ExtStrCat ` U ) |`cat ( Hom ` R ) ) ) , y e. ( Base ` ( ( ExtStrCat ` U ) |`cat ( Hom ` R ) ) ) |-> ( _I |` ( x ( Hom ` R ) y ) ) ) ) |
| 29 | 13 14 15 20 28 | inclfusubc | |- ( ph -> F ( ( ( ExtStrCat ` U ) |`cat ( Hom ` R ) ) Func ( ExtStrCat ` U ) ) G ) |
| 30 | 2 | a1i | |- ( ph -> E = ( ExtStrCat ` U ) ) |
| 31 | 16 30 | oveq12d | |- ( ph -> ( R Func E ) = ( ( ( ExtStrCat ` U ) |`cat ( Hom ` R ) ) Func ( ExtStrCat ` U ) ) ) |
| 32 | 31 | breqd | |- ( ph -> ( F ( R Func E ) G <-> F ( ( ( ExtStrCat ` U ) |`cat ( Hom ` R ) ) Func ( ExtStrCat ` U ) ) G ) ) |
| 33 | 29 32 | mpbird | |- ( ph -> F ( R Func E ) G ) |