This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. With a longer proof analogous to cbvmpt , some distinct variable requirements could be eliminated. (Contributed by NM, 11-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvmpov.1 | |- ( x = z -> C = E ) |
|
| cbvmpov.2 | |- ( y = w -> E = D ) |
||
| Assertion | cbvmpov | |- ( x e. A , y e. B |-> C ) = ( z e. A , w e. B |-> D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvmpov.1 | |- ( x = z -> C = E ) |
|
| 2 | cbvmpov.2 | |- ( y = w -> E = D ) |
|
| 3 | eleq1w | |- ( x = z -> ( x e. A <-> z e. A ) ) |
|
| 4 | eleq1w | |- ( y = w -> ( y e. B <-> w e. B ) ) |
|
| 5 | 3 4 | bi2anan9 | |- ( ( x = z /\ y = w ) -> ( ( x e. A /\ y e. B ) <-> ( z e. A /\ w e. B ) ) ) |
| 6 | 1 2 | sylan9eq | |- ( ( x = z /\ y = w ) -> C = D ) |
| 7 | 6 | eqeq2d | |- ( ( x = z /\ y = w ) -> ( v = C <-> v = D ) ) |
| 8 | 5 7 | anbi12d | |- ( ( x = z /\ y = w ) -> ( ( ( x e. A /\ y e. B ) /\ v = C ) <-> ( ( z e. A /\ w e. B ) /\ v = D ) ) ) |
| 9 | 8 | cbvoprab12v | |- { <. <. x , y >. , v >. | ( ( x e. A /\ y e. B ) /\ v = C ) } = { <. <. z , w >. , v >. | ( ( z e. A /\ w e. B ) /\ v = D ) } |
| 10 | df-mpo | |- ( x e. A , y e. B |-> C ) = { <. <. x , y >. , v >. | ( ( x e. A /\ y e. B ) /\ v = C ) } |
|
| 11 | df-mpo | |- ( z e. A , w e. B |-> D ) = { <. <. z , w >. , v >. | ( ( z e. A /\ w e. B ) /\ v = D ) } |
|
| 12 | 9 10 11 | 3eqtr4i | |- ( x e. A , y e. B |-> C ) = ( z e. A , w e. B |-> D ) |