This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An equality deduction for the maps-to notation. (Contributed by Mario Carneiro, 26-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mpoeq123dv.1 | |- ( ph -> A = D ) |
|
| mpoeq123dva.2 | |- ( ( ph /\ x e. A ) -> B = E ) |
||
| mpoeq123dva.3 | |- ( ( ph /\ ( x e. A /\ y e. B ) ) -> C = F ) |
||
| Assertion | mpoeq123dva | |- ( ph -> ( x e. A , y e. B |-> C ) = ( x e. D , y e. E |-> F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoeq123dv.1 | |- ( ph -> A = D ) |
|
| 2 | mpoeq123dva.2 | |- ( ( ph /\ x e. A ) -> B = E ) |
|
| 3 | mpoeq123dva.3 | |- ( ( ph /\ ( x e. A /\ y e. B ) ) -> C = F ) |
|
| 4 | 3 | eqeq2d | |- ( ( ph /\ ( x e. A /\ y e. B ) ) -> ( z = C <-> z = F ) ) |
| 5 | 4 | pm5.32da | |- ( ph -> ( ( ( x e. A /\ y e. B ) /\ z = C ) <-> ( ( x e. A /\ y e. B ) /\ z = F ) ) ) |
| 6 | 2 | eleq2d | |- ( ( ph /\ x e. A ) -> ( y e. B <-> y e. E ) ) |
| 7 | 6 | pm5.32da | |- ( ph -> ( ( x e. A /\ y e. B ) <-> ( x e. A /\ y e. E ) ) ) |
| 8 | 1 | eleq2d | |- ( ph -> ( x e. A <-> x e. D ) ) |
| 9 | 8 | anbi1d | |- ( ph -> ( ( x e. A /\ y e. E ) <-> ( x e. D /\ y e. E ) ) ) |
| 10 | 7 9 | bitrd | |- ( ph -> ( ( x e. A /\ y e. B ) <-> ( x e. D /\ y e. E ) ) ) |
| 11 | 10 | anbi1d | |- ( ph -> ( ( ( x e. A /\ y e. B ) /\ z = F ) <-> ( ( x e. D /\ y e. E ) /\ z = F ) ) ) |
| 12 | 5 11 | bitrd | |- ( ph -> ( ( ( x e. A /\ y e. B ) /\ z = C ) <-> ( ( x e. D /\ y e. E ) /\ z = F ) ) ) |
| 13 | 12 | oprabbidv | |- ( ph -> { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } = { <. <. x , y >. , z >. | ( ( x e. D /\ y e. E ) /\ z = F ) } ) |
| 14 | df-mpo | |- ( x e. A , y e. B |-> C ) = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } |
|
| 15 | df-mpo | |- ( x e. D , y e. E |-> F ) = { <. <. x , y >. , z >. | ( ( x e. D /\ y e. E ) /\ z = F ) } |
|
| 16 | 13 14 15 | 3eqtr4g | |- ( ph -> ( x e. A , y e. B |-> C ) = ( x e. D , y e. E |-> F ) ) |