This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of funcrngcsetc , using cofuval2 to construct the "natural forgetful functor" from the category of non-unital rings into the category of sets by composing the "inclusion functor" from the category of non-unital rings into the category of extensible structures, see rngcifuestrc , and the "natural forgetful functor" from the category of extensible structures into the category of sets, see funcestrcsetc . Surprisingly, this proof is longer than the direct proof given in funcrngcsetc . (Contributed by AV, 30-Mar-2020) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcrngcsetcALT.r | ⊢ 𝑅 = ( RngCat ‘ 𝑈 ) | |
| funcrngcsetcALT.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | ||
| funcrngcsetcALT.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| funcrngcsetcALT.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | ||
| funcrngcsetcALT.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) ) | ||
| funcrngcsetcALT.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 RngHom 𝑦 ) ) ) ) | ||
| Assertion | funcrngcsetcALT | ⊢ ( 𝜑 → 𝐹 ( 𝑅 Func 𝑆 ) 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcrngcsetcALT.r | ⊢ 𝑅 = ( RngCat ‘ 𝑈 ) | |
| 2 | funcrngcsetcALT.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | |
| 3 | funcrngcsetcALT.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 4 | funcrngcsetcALT.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
| 5 | funcrngcsetcALT.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) ) | |
| 6 | funcrngcsetcALT.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 RngHom 𝑦 ) ) ) ) | |
| 7 | fveq2 | ⊢ ( 𝑥 = 𝑢 → ( Base ‘ 𝑥 ) = ( Base ‘ 𝑢 ) ) | |
| 8 | 7 | cbvmptv | ⊢ ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) = ( 𝑢 ∈ 𝐵 ↦ ( Base ‘ 𝑢 ) ) |
| 9 | 5 8 | eqtrdi | ⊢ ( 𝜑 → 𝐹 = ( 𝑢 ∈ 𝐵 ↦ ( Base ‘ 𝑢 ) ) ) |
| 10 | coires1 | ⊢ ( ( 𝑢 ∈ 𝑈 ↦ ( Base ‘ 𝑢 ) ) ∘ ( I ↾ 𝐵 ) ) = ( ( 𝑢 ∈ 𝑈 ↦ ( Base ‘ 𝑢 ) ) ↾ 𝐵 ) | |
| 11 | 1 3 4 | rngcbas | ⊢ ( 𝜑 → 𝐵 = ( 𝑈 ∩ Rng ) ) |
| 12 | 11 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ ( 𝑈 ∩ Rng ) ) ) |
| 13 | elin | ⊢ ( 𝑥 ∈ ( 𝑈 ∩ Rng ) ↔ ( 𝑥 ∈ 𝑈 ∧ 𝑥 ∈ Rng ) ) | |
| 14 | 13 | simplbi | ⊢ ( 𝑥 ∈ ( 𝑈 ∩ Rng ) → 𝑥 ∈ 𝑈 ) |
| 15 | 12 14 | biimtrdi | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝑈 ) ) |
| 16 | 15 | ssrdv | ⊢ ( 𝜑 → 𝐵 ⊆ 𝑈 ) |
| 17 | 16 | resmptd | ⊢ ( 𝜑 → ( ( 𝑢 ∈ 𝑈 ↦ ( Base ‘ 𝑢 ) ) ↾ 𝐵 ) = ( 𝑢 ∈ 𝐵 ↦ ( Base ‘ 𝑢 ) ) ) |
| 18 | 10 17 | eqtr2id | ⊢ ( 𝜑 → ( 𝑢 ∈ 𝐵 ↦ ( Base ‘ 𝑢 ) ) = ( ( 𝑢 ∈ 𝑈 ↦ ( Base ‘ 𝑢 ) ) ∘ ( I ↾ 𝐵 ) ) ) |
| 19 | 9 18 | eqtrd | ⊢ ( 𝜑 → 𝐹 = ( ( 𝑢 ∈ 𝑈 ↦ ( Base ‘ 𝑢 ) ) ∘ ( I ↾ 𝐵 ) ) ) |
| 20 | coires1 | ⊢ ( ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ∘ ( I ↾ ( 𝑥 RngHom 𝑦 ) ) ) = ( ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ↾ ( 𝑥 RngHom 𝑦 ) ) | |
| 21 | eqid | ⊢ ( Base ‘ 𝑥 ) = ( Base ‘ 𝑥 ) | |
| 22 | eqid | ⊢ ( Base ‘ 𝑦 ) = ( Base ‘ 𝑦 ) | |
| 23 | 21 22 | rnghmf | ⊢ ( 𝑧 ∈ ( 𝑥 RngHom 𝑦 ) → 𝑧 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) |
| 24 | fvex | ⊢ ( Base ‘ 𝑦 ) ∈ V | |
| 25 | fvex | ⊢ ( Base ‘ 𝑥 ) ∈ V | |
| 26 | 24 25 | pm3.2i | ⊢ ( ( Base ‘ 𝑦 ) ∈ V ∧ ( Base ‘ 𝑥 ) ∈ V ) |
| 27 | elmapg | ⊢ ( ( ( Base ‘ 𝑦 ) ∈ V ∧ ( Base ‘ 𝑥 ) ∈ V ) → ( 𝑧 ∈ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ↔ 𝑧 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) ) | |
| 28 | 26 27 | mp1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑧 ∈ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ↔ 𝑧 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) ) |
| 29 | 23 28 | imbitrrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑧 ∈ ( 𝑥 RngHom 𝑦 ) → 𝑧 ∈ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) |
| 30 | 29 | ssrdv | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 RngHom 𝑦 ) ⊆ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) |
| 31 | 30 | resabs1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ↾ ( 𝑥 RngHom 𝑦 ) ) = ( I ↾ ( 𝑥 RngHom 𝑦 ) ) ) |
| 32 | 20 31 | eqtr2id | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( I ↾ ( 𝑥 RngHom 𝑦 ) ) = ( ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ∘ ( I ↾ ( 𝑥 RngHom 𝑦 ) ) ) ) |
| 33 | 32 | mpoeq3dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 RngHom 𝑦 ) ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ∘ ( I ↾ ( 𝑥 RngHom 𝑦 ) ) ) ) ) |
| 34 | 6 33 | eqtrd | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ∘ ( I ↾ ( 𝑥 RngHom 𝑦 ) ) ) ) ) |
| 35 | 3 | a1i | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) |
| 36 | 3 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐵 = ( Base ‘ 𝑅 ) ) |
| 37 | fvresi | ⊢ ( 𝑥 ∈ 𝐵 → ( ( I ↾ 𝐵 ) ‘ 𝑥 ) = 𝑥 ) | |
| 38 | 37 | adantr | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( I ↾ 𝐵 ) ‘ 𝑥 ) = 𝑥 ) |
| 39 | 38 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( I ↾ 𝐵 ) ‘ 𝑥 ) = 𝑥 ) |
| 40 | fvresi | ⊢ ( 𝑦 ∈ 𝐵 → ( ( I ↾ 𝐵 ) ‘ 𝑦 ) = 𝑦 ) | |
| 41 | 40 | adantl | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( I ↾ 𝐵 ) ‘ 𝑦 ) = 𝑦 ) |
| 42 | 41 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( I ↾ 𝐵 ) ‘ 𝑦 ) = 𝑦 ) |
| 43 | 39 42 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( ( I ↾ 𝐵 ) ‘ 𝑥 ) ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) ( ( I ↾ 𝐵 ) ‘ 𝑦 ) ) = ( 𝑥 ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) 𝑦 ) ) |
| 44 | eqidd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) = ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) ) | |
| 45 | simprr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑤 = 𝑥 ∧ 𝑧 = 𝑦 ) ) → 𝑧 = 𝑦 ) | |
| 46 | 45 | fveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑤 = 𝑥 ∧ 𝑧 = 𝑦 ) ) → ( Base ‘ 𝑧 ) = ( Base ‘ 𝑦 ) ) |
| 47 | simprl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑤 = 𝑥 ∧ 𝑧 = 𝑦 ) ) → 𝑤 = 𝑥 ) | |
| 48 | 47 | fveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑤 = 𝑥 ∧ 𝑧 = 𝑦 ) ) → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑥 ) ) |
| 49 | 46 48 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑤 = 𝑥 ∧ 𝑧 = 𝑦 ) ) → ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) = ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) |
| 50 | 49 | reseq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑤 = 𝑥 ∧ 𝑧 = 𝑦 ) ) → ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) = ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) |
| 51 | 15 | com12 | ⊢ ( 𝑥 ∈ 𝐵 → ( 𝜑 → 𝑥 ∈ 𝑈 ) ) |
| 52 | 51 | adantr | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝜑 → 𝑥 ∈ 𝑈 ) ) |
| 53 | 52 | impcom | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ 𝑈 ) |
| 54 | 11 | eleq2d | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ ( 𝑈 ∩ Rng ) ) ) |
| 55 | elin | ⊢ ( 𝑦 ∈ ( 𝑈 ∩ Rng ) ↔ ( 𝑦 ∈ 𝑈 ∧ 𝑦 ∈ Rng ) ) | |
| 56 | 55 | simplbi | ⊢ ( 𝑦 ∈ ( 𝑈 ∩ Rng ) → 𝑦 ∈ 𝑈 ) |
| 57 | 54 56 | biimtrdi | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝑈 ) ) |
| 58 | 57 | a1d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝑈 ) ) ) |
| 59 | 58 | imp32 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝑈 ) |
| 60 | ovex | ⊢ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ∈ V | |
| 61 | 60 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ∈ V ) |
| 62 | 61 | resiexd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ∈ V ) |
| 63 | 44 50 53 59 62 | ovmpod | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) 𝑦 ) = ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) |
| 64 | 43 63 | eqtr2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) = ( ( ( I ↾ 𝐵 ) ‘ 𝑥 ) ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) ( ( I ↾ 𝐵 ) ‘ 𝑦 ) ) ) |
| 65 | eqidd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHom 𝑔 ) ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHom 𝑔 ) ) ) ) | |
| 66 | oveq12 | ⊢ ( ( 𝑓 = 𝑥 ∧ 𝑔 = 𝑦 ) → ( 𝑓 RngHom 𝑔 ) = ( 𝑥 RngHom 𝑦 ) ) | |
| 67 | 66 | reseq2d | ⊢ ( ( 𝑓 = 𝑥 ∧ 𝑔 = 𝑦 ) → ( I ↾ ( 𝑓 RngHom 𝑔 ) ) = ( I ↾ ( 𝑥 RngHom 𝑦 ) ) ) |
| 68 | 67 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑓 = 𝑥 ∧ 𝑔 = 𝑦 ) ) → ( I ↾ ( 𝑓 RngHom 𝑔 ) ) = ( I ↾ ( 𝑥 RngHom 𝑦 ) ) ) |
| 69 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) | |
| 70 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) | |
| 71 | ovex | ⊢ ( 𝑥 RngHom 𝑦 ) ∈ V | |
| 72 | 71 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 RngHom 𝑦 ) ∈ V ) |
| 73 | 72 | resiexd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( I ↾ ( 𝑥 RngHom 𝑦 ) ) ∈ V ) |
| 74 | 65 68 69 70 73 | ovmpod | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHom 𝑔 ) ) ) 𝑦 ) = ( I ↾ ( 𝑥 RngHom 𝑦 ) ) ) |
| 75 | 74 | eqcomd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( I ↾ ( 𝑥 RngHom 𝑦 ) ) = ( 𝑥 ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHom 𝑔 ) ) ) 𝑦 ) ) |
| 76 | 64 75 | coeq12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ∘ ( I ↾ ( 𝑥 RngHom 𝑦 ) ) ) = ( ( ( ( I ↾ 𝐵 ) ‘ 𝑥 ) ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) ( ( I ↾ 𝐵 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHom 𝑔 ) ) ) 𝑦 ) ) ) |
| 77 | 35 36 76 | mpoeq123dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ∘ ( I ↾ ( 𝑥 RngHom 𝑦 ) ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑅 ) ↦ ( ( ( ( I ↾ 𝐵 ) ‘ 𝑥 ) ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) ( ( I ↾ 𝐵 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHom 𝑔 ) ) ) 𝑦 ) ) ) ) |
| 78 | 34 77 | eqtrd | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑅 ) ↦ ( ( ( ( I ↾ 𝐵 ) ‘ 𝑥 ) ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) ( ( I ↾ 𝐵 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHom 𝑔 ) ) ) 𝑦 ) ) ) ) |
| 79 | 19 78 | opeq12d | ⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 = 〈 ( ( 𝑢 ∈ 𝑈 ↦ ( Base ‘ 𝑢 ) ) ∘ ( I ↾ 𝐵 ) ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑅 ) ↦ ( ( ( ( I ↾ 𝐵 ) ‘ 𝑥 ) ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) ( ( I ↾ 𝐵 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHom 𝑔 ) ) ) 𝑦 ) ) ) 〉 ) |
| 80 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 81 | eqid | ⊢ ( ExtStrCat ‘ 𝑈 ) = ( ExtStrCat ‘ 𝑈 ) | |
| 82 | eqidd | ⊢ ( 𝜑 → ( I ↾ 𝐵 ) = ( I ↾ 𝐵 ) ) | |
| 83 | eqidd | ⊢ ( 𝜑 → ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHom 𝑔 ) ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHom 𝑔 ) ) ) ) | |
| 84 | 1 81 3 4 82 83 | rngcifuestrc | ⊢ ( 𝜑 → ( I ↾ 𝐵 ) ( 𝑅 Func ( ExtStrCat ‘ 𝑈 ) ) ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHom 𝑔 ) ) ) ) |
| 85 | eqid | ⊢ ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) = ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) | |
| 86 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 87 | 81 4 | estrcbas | ⊢ ( 𝜑 → 𝑈 = ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) ) |
| 88 | 87 | mpteq1d | ⊢ ( 𝜑 → ( 𝑢 ∈ 𝑈 ↦ ( Base ‘ 𝑢 ) ) = ( 𝑢 ∈ ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) ↦ ( Base ‘ 𝑢 ) ) ) |
| 89 | fveq2 | ⊢ ( 𝑤 = 𝑢 → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑢 ) ) | |
| 90 | 89 | oveq2d | ⊢ ( 𝑤 = 𝑢 → ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) = ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑢 ) ) ) |
| 91 | 90 | reseq2d | ⊢ ( 𝑤 = 𝑢 → ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) = ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑢 ) ) ) ) |
| 92 | fveq2 | ⊢ ( 𝑧 = 𝑣 → ( Base ‘ 𝑧 ) = ( Base ‘ 𝑣 ) ) | |
| 93 | 92 | oveq1d | ⊢ ( 𝑧 = 𝑣 → ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑢 ) ) = ( ( Base ‘ 𝑣 ) ↑m ( Base ‘ 𝑢 ) ) ) |
| 94 | 93 | reseq2d | ⊢ ( 𝑧 = 𝑣 → ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑢 ) ) ) = ( I ↾ ( ( Base ‘ 𝑣 ) ↑m ( Base ‘ 𝑢 ) ) ) ) |
| 95 | 91 94 | cbvmpov | ⊢ ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) = ( 𝑢 ∈ 𝑈 , 𝑣 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑣 ) ↑m ( Base ‘ 𝑢 ) ) ) ) |
| 96 | 95 | a1i | ⊢ ( 𝜑 → ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) = ( 𝑢 ∈ 𝑈 , 𝑣 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑣 ) ↑m ( Base ‘ 𝑢 ) ) ) ) ) |
| 97 | eqidd | ⊢ ( 𝜑 → ( I ↾ ( ( Base ‘ 𝑣 ) ↑m ( Base ‘ 𝑢 ) ) ) = ( I ↾ ( ( Base ‘ 𝑣 ) ↑m ( Base ‘ 𝑢 ) ) ) ) | |
| 98 | 87 87 97 | mpoeq123dv | ⊢ ( 𝜑 → ( 𝑢 ∈ 𝑈 , 𝑣 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑣 ) ↑m ( Base ‘ 𝑢 ) ) ) ) = ( 𝑢 ∈ ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) , 𝑣 ∈ ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) ↦ ( I ↾ ( ( Base ‘ 𝑣 ) ↑m ( Base ‘ 𝑢 ) ) ) ) ) |
| 99 | 96 98 | eqtrd | ⊢ ( 𝜑 → ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) = ( 𝑢 ∈ ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) , 𝑣 ∈ ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) ↦ ( I ↾ ( ( Base ‘ 𝑣 ) ↑m ( Base ‘ 𝑢 ) ) ) ) ) |
| 100 | 81 2 85 86 4 88 99 | funcestrcsetc | ⊢ ( 𝜑 → ( 𝑢 ∈ 𝑈 ↦ ( Base ‘ 𝑢 ) ) ( ( ExtStrCat ‘ 𝑈 ) Func 𝑆 ) ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) ) |
| 101 | 80 84 100 | cofuval2 | ⊢ ( 𝜑 → ( 〈 ( 𝑢 ∈ 𝑈 ↦ ( Base ‘ 𝑢 ) ) , ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) 〉 ∘func 〈 ( I ↾ 𝐵 ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHom 𝑔 ) ) ) 〉 ) = 〈 ( ( 𝑢 ∈ 𝑈 ↦ ( Base ‘ 𝑢 ) ) ∘ ( I ↾ 𝐵 ) ) , ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑅 ) ↦ ( ( ( ( I ↾ 𝐵 ) ‘ 𝑥 ) ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) ( ( I ↾ 𝐵 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHom 𝑔 ) ) ) 𝑦 ) ) ) 〉 ) |
| 102 | 79 101 | eqtr4d | ⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 = ( 〈 ( 𝑢 ∈ 𝑈 ↦ ( Base ‘ 𝑢 ) ) , ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) 〉 ∘func 〈 ( I ↾ 𝐵 ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHom 𝑔 ) ) ) 〉 ) ) |
| 103 | df-br | ⊢ ( ( I ↾ 𝐵 ) ( 𝑅 Func ( ExtStrCat ‘ 𝑈 ) ) ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHom 𝑔 ) ) ) ↔ 〈 ( I ↾ 𝐵 ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHom 𝑔 ) ) ) 〉 ∈ ( 𝑅 Func ( ExtStrCat ‘ 𝑈 ) ) ) | |
| 104 | 84 103 | sylib | ⊢ ( 𝜑 → 〈 ( I ↾ 𝐵 ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHom 𝑔 ) ) ) 〉 ∈ ( 𝑅 Func ( ExtStrCat ‘ 𝑈 ) ) ) |
| 105 | df-br | ⊢ ( ( 𝑢 ∈ 𝑈 ↦ ( Base ‘ 𝑢 ) ) ( ( ExtStrCat ‘ 𝑈 ) Func 𝑆 ) ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) ↔ 〈 ( 𝑢 ∈ 𝑈 ↦ ( Base ‘ 𝑢 ) ) , ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) 〉 ∈ ( ( ExtStrCat ‘ 𝑈 ) Func 𝑆 ) ) | |
| 106 | 100 105 | sylib | ⊢ ( 𝜑 → 〈 ( 𝑢 ∈ 𝑈 ↦ ( Base ‘ 𝑢 ) ) , ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) 〉 ∈ ( ( ExtStrCat ‘ 𝑈 ) Func 𝑆 ) ) |
| 107 | 104 106 | cofucl | ⊢ ( 𝜑 → ( 〈 ( 𝑢 ∈ 𝑈 ↦ ( Base ‘ 𝑢 ) ) , ( 𝑤 ∈ 𝑈 , 𝑧 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ 𝑤 ) ) ) ) 〉 ∘func 〈 ( I ↾ 𝐵 ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( I ↾ ( 𝑓 RngHom 𝑔 ) ) ) 〉 ) ∈ ( 𝑅 Func 𝑆 ) ) |
| 108 | 102 107 | eqeltrd | ⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝑅 Func 𝑆 ) ) |
| 109 | df-br | ⊢ ( 𝐹 ( 𝑅 Func 𝑆 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝑅 Func 𝑆 ) ) | |
| 110 | 108 109 | sylibr | ⊢ ( 𝜑 → 𝐹 ( 𝑅 Func 𝑆 ) 𝐺 ) |