This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Set of objects of the category of extensible structures (in a universe). (Contributed by AV, 7-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | estrcbas.c | |- C = ( ExtStrCat ` U ) |
|
| estrcbas.u | |- ( ph -> U e. V ) |
||
| Assertion | estrcbas | |- ( ph -> U = ( Base ` C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | estrcbas.c | |- C = ( ExtStrCat ` U ) |
|
| 2 | estrcbas.u | |- ( ph -> U e. V ) |
|
| 3 | catstr | |- { <. ( Base ` ndx ) , U >. , <. ( Hom ` ndx ) , ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) >. , <. ( comp ` ndx ) , ( v e. ( U X. U ) , z e. U |-> ( g e. ( ( Base ` z ) ^m ( Base ` ( 2nd ` v ) ) ) , f e. ( ( Base ` ( 2nd ` v ) ) ^m ( Base ` ( 1st ` v ) ) ) |-> ( g o. f ) ) ) >. } Struct <. 1 , ; 1 5 >. |
|
| 4 | baseid | |- Base = Slot ( Base ` ndx ) |
|
| 5 | snsstp1 | |- { <. ( Base ` ndx ) , U >. } C_ { <. ( Base ` ndx ) , U >. , <. ( Hom ` ndx ) , ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) >. , <. ( comp ` ndx ) , ( v e. ( U X. U ) , z e. U |-> ( g e. ( ( Base ` z ) ^m ( Base ` ( 2nd ` v ) ) ) , f e. ( ( Base ` ( 2nd ` v ) ) ^m ( Base ` ( 1st ` v ) ) ) |-> ( g o. f ) ) ) >. } |
|
| 6 | 3 4 5 | strfv | |- ( U e. V -> U = ( Base ` { <. ( Base ` ndx ) , U >. , <. ( Hom ` ndx ) , ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) >. , <. ( comp ` ndx ) , ( v e. ( U X. U ) , z e. U |-> ( g e. ( ( Base ` z ) ^m ( Base ` ( 2nd ` v ) ) ) , f e. ( ( Base ` ( 2nd ` v ) ) ^m ( Base ` ( 1st ` v ) ) ) |-> ( g o. f ) ) ) >. } ) ) |
| 7 | 2 6 | syl | |- ( ph -> U = ( Base ` { <. ( Base ` ndx ) , U >. , <. ( Hom ` ndx ) , ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) >. , <. ( comp ` ndx ) , ( v e. ( U X. U ) , z e. U |-> ( g e. ( ( Base ` z ) ^m ( Base ` ( 2nd ` v ) ) ) , f e. ( ( Base ` ( 2nd ` v ) ) ^m ( Base ` ( 1st ` v ) ) ) |-> ( g o. f ) ) ) >. } ) ) |
| 8 | eqidd | |- ( ph -> ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) = ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) ) |
|
| 9 | eqidd | |- ( ph -> ( v e. ( U X. U ) , z e. U |-> ( g e. ( ( Base ` z ) ^m ( Base ` ( 2nd ` v ) ) ) , f e. ( ( Base ` ( 2nd ` v ) ) ^m ( Base ` ( 1st ` v ) ) ) |-> ( g o. f ) ) ) = ( v e. ( U X. U ) , z e. U |-> ( g e. ( ( Base ` z ) ^m ( Base ` ( 2nd ` v ) ) ) , f e. ( ( Base ` ( 2nd ` v ) ) ^m ( Base ` ( 1st ` v ) ) ) |-> ( g o. f ) ) ) ) |
|
| 10 | 1 2 8 9 | estrcval | |- ( ph -> C = { <. ( Base ` ndx ) , U >. , <. ( Hom ` ndx ) , ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) >. , <. ( comp ` ndx ) , ( v e. ( U X. U ) , z e. U |-> ( g e. ( ( Base ` z ) ^m ( Base ` ( 2nd ` v ) ) ) , f e. ( ( Base ` ( 2nd ` v ) ) ^m ( Base ` ( 1st ` v ) ) ) |-> ( g o. f ) ) ) >. } ) |
| 11 | 10 | fveq2d | |- ( ph -> ( Base ` C ) = ( Base ` { <. ( Base ` ndx ) , U >. , <. ( Hom ` ndx ) , ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) >. , <. ( comp ` ndx ) , ( v e. ( U X. U ) , z e. U |-> ( g e. ( ( Base ` z ) ^m ( Base ` ( 2nd ` v ) ) ) , f e. ( ( Base ` ( 2nd ` v ) ) ^m ( Base ` ( 1st ` v ) ) ) |-> ( g o. f ) ) ) >. } ) ) |
| 12 | 7 11 | eqtr4d | |- ( ph -> U = ( Base ` C ) ) |