This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a continuous function has zero derivative at all points on the interior of a closed interval, then it must be a constant function. (Contributed by Mario Carneiro, 2-Sep-2014) (Proof shortened by Mario Carneiro, 3-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dveq0.a | |- ( ph -> A e. RR ) |
|
| dveq0.b | |- ( ph -> B e. RR ) |
||
| dveq0.c | |- ( ph -> F e. ( ( A [,] B ) -cn-> CC ) ) |
||
| dveq0.d | |- ( ph -> ( RR _D F ) = ( ( A (,) B ) X. { 0 } ) ) |
||
| Assertion | dveq0 | |- ( ph -> F = ( ( A [,] B ) X. { ( F ` A ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dveq0.a | |- ( ph -> A e. RR ) |
|
| 2 | dveq0.b | |- ( ph -> B e. RR ) |
|
| 3 | dveq0.c | |- ( ph -> F e. ( ( A [,] B ) -cn-> CC ) ) |
|
| 4 | dveq0.d | |- ( ph -> ( RR _D F ) = ( ( A (,) B ) X. { 0 } ) ) |
|
| 5 | cncff | |- ( F e. ( ( A [,] B ) -cn-> CC ) -> F : ( A [,] B ) --> CC ) |
|
| 6 | 3 5 | syl | |- ( ph -> F : ( A [,] B ) --> CC ) |
| 7 | 6 | ffnd | |- ( ph -> F Fn ( A [,] B ) ) |
| 8 | fvex | |- ( F ` A ) e. _V |
|
| 9 | fnconstg | |- ( ( F ` A ) e. _V -> ( ( A [,] B ) X. { ( F ` A ) } ) Fn ( A [,] B ) ) |
|
| 10 | 8 9 | mp1i | |- ( ph -> ( ( A [,] B ) X. { ( F ` A ) } ) Fn ( A [,] B ) ) |
| 11 | 8 | fvconst2 | |- ( x e. ( A [,] B ) -> ( ( ( A [,] B ) X. { ( F ` A ) } ) ` x ) = ( F ` A ) ) |
| 12 | 11 | adantl | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( ( ( A [,] B ) X. { ( F ` A ) } ) ` x ) = ( F ` A ) ) |
| 13 | 6 | adantr | |- ( ( ph /\ x e. ( A [,] B ) ) -> F : ( A [,] B ) --> CC ) |
| 14 | 1 | adantr | |- ( ( ph /\ x e. ( A [,] B ) ) -> A e. RR ) |
| 15 | 14 | rexrd | |- ( ( ph /\ x e. ( A [,] B ) ) -> A e. RR* ) |
| 16 | 2 | adantr | |- ( ( ph /\ x e. ( A [,] B ) ) -> B e. RR ) |
| 17 | 16 | rexrd | |- ( ( ph /\ x e. ( A [,] B ) ) -> B e. RR* ) |
| 18 | elicc2 | |- ( ( A e. RR /\ B e. RR ) -> ( x e. ( A [,] B ) <-> ( x e. RR /\ A <_ x /\ x <_ B ) ) ) |
|
| 19 | 1 2 18 | syl2anc | |- ( ph -> ( x e. ( A [,] B ) <-> ( x e. RR /\ A <_ x /\ x <_ B ) ) ) |
| 20 | 19 | biimpa | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( x e. RR /\ A <_ x /\ x <_ B ) ) |
| 21 | 20 | simp1d | |- ( ( ph /\ x e. ( A [,] B ) ) -> x e. RR ) |
| 22 | 20 | simp2d | |- ( ( ph /\ x e. ( A [,] B ) ) -> A <_ x ) |
| 23 | 20 | simp3d | |- ( ( ph /\ x e. ( A [,] B ) ) -> x <_ B ) |
| 24 | 14 21 16 22 23 | letrd | |- ( ( ph /\ x e. ( A [,] B ) ) -> A <_ B ) |
| 25 | lbicc2 | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) ) |
|
| 26 | 15 17 24 25 | syl3anc | |- ( ( ph /\ x e. ( A [,] B ) ) -> A e. ( A [,] B ) ) |
| 27 | 13 26 | ffvelcdmd | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` A ) e. CC ) |
| 28 | 6 | ffvelcdmda | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` x ) e. CC ) |
| 29 | 27 28 | subcld | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( ( F ` A ) - ( F ` x ) ) e. CC ) |
| 30 | simpr | |- ( ( ph /\ x e. ( A [,] B ) ) -> x e. ( A [,] B ) ) |
|
| 31 | 26 30 | jca | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( A e. ( A [,] B ) /\ x e. ( A [,] B ) ) ) |
| 32 | 4 | dmeqd | |- ( ph -> dom ( RR _D F ) = dom ( ( A (,) B ) X. { 0 } ) ) |
| 33 | c0ex | |- 0 e. _V |
|
| 34 | 33 | snnz | |- { 0 } =/= (/) |
| 35 | dmxp | |- ( { 0 } =/= (/) -> dom ( ( A (,) B ) X. { 0 } ) = ( A (,) B ) ) |
|
| 36 | 34 35 | ax-mp | |- dom ( ( A (,) B ) X. { 0 } ) = ( A (,) B ) |
| 37 | 32 36 | eqtrdi | |- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
| 38 | 0red | |- ( ph -> 0 e. RR ) |
|
| 39 | 4 | fveq1d | |- ( ph -> ( ( RR _D F ) ` y ) = ( ( ( A (,) B ) X. { 0 } ) ` y ) ) |
| 40 | 33 | fvconst2 | |- ( y e. ( A (,) B ) -> ( ( ( A (,) B ) X. { 0 } ) ` y ) = 0 ) |
| 41 | 39 40 | sylan9eq | |- ( ( ph /\ y e. ( A (,) B ) ) -> ( ( RR _D F ) ` y ) = 0 ) |
| 42 | 41 | abs00bd | |- ( ( ph /\ y e. ( A (,) B ) ) -> ( abs ` ( ( RR _D F ) ` y ) ) = 0 ) |
| 43 | 0le0 | |- 0 <_ 0 |
|
| 44 | 42 43 | eqbrtrdi | |- ( ( ph /\ y e. ( A (,) B ) ) -> ( abs ` ( ( RR _D F ) ` y ) ) <_ 0 ) |
| 45 | 1 2 3 37 38 44 | dvlip | |- ( ( ph /\ ( A e. ( A [,] B ) /\ x e. ( A [,] B ) ) ) -> ( abs ` ( ( F ` A ) - ( F ` x ) ) ) <_ ( 0 x. ( abs ` ( A - x ) ) ) ) |
| 46 | 31 45 | syldan | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( abs ` ( ( F ` A ) - ( F ` x ) ) ) <_ ( 0 x. ( abs ` ( A - x ) ) ) ) |
| 47 | 14 | recnd | |- ( ( ph /\ x e. ( A [,] B ) ) -> A e. CC ) |
| 48 | 21 | recnd | |- ( ( ph /\ x e. ( A [,] B ) ) -> x e. CC ) |
| 49 | 47 48 | subcld | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( A - x ) e. CC ) |
| 50 | 49 | abscld | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( abs ` ( A - x ) ) e. RR ) |
| 51 | 50 | recnd | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( abs ` ( A - x ) ) e. CC ) |
| 52 | 51 | mul02d | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( 0 x. ( abs ` ( A - x ) ) ) = 0 ) |
| 53 | 46 52 | breqtrd | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( abs ` ( ( F ` A ) - ( F ` x ) ) ) <_ 0 ) |
| 54 | 29 | absge0d | |- ( ( ph /\ x e. ( A [,] B ) ) -> 0 <_ ( abs ` ( ( F ` A ) - ( F ` x ) ) ) ) |
| 55 | 29 | abscld | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( abs ` ( ( F ` A ) - ( F ` x ) ) ) e. RR ) |
| 56 | 0re | |- 0 e. RR |
|
| 57 | letri3 | |- ( ( ( abs ` ( ( F ` A ) - ( F ` x ) ) ) e. RR /\ 0 e. RR ) -> ( ( abs ` ( ( F ` A ) - ( F ` x ) ) ) = 0 <-> ( ( abs ` ( ( F ` A ) - ( F ` x ) ) ) <_ 0 /\ 0 <_ ( abs ` ( ( F ` A ) - ( F ` x ) ) ) ) ) ) |
|
| 58 | 55 56 57 | sylancl | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( ( abs ` ( ( F ` A ) - ( F ` x ) ) ) = 0 <-> ( ( abs ` ( ( F ` A ) - ( F ` x ) ) ) <_ 0 /\ 0 <_ ( abs ` ( ( F ` A ) - ( F ` x ) ) ) ) ) ) |
| 59 | 53 54 58 | mpbir2and | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( abs ` ( ( F ` A ) - ( F ` x ) ) ) = 0 ) |
| 60 | 29 59 | abs00d | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( ( F ` A ) - ( F ` x ) ) = 0 ) |
| 61 | 27 28 60 | subeq0d | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` A ) = ( F ` x ) ) |
| 62 | 12 61 | eqtr2d | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` x ) = ( ( ( A [,] B ) X. { ( F ` A ) } ) ` x ) ) |
| 63 | 7 10 62 | eqfnfvd | |- ( ph -> F = ( ( A [,] B ) X. { ( F ` A ) } ) ) |