This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The integral of anything on the empty set is zero. (Contributed by Mario Carneiro, 13-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itg0 | |- S. (/) A _d x = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Re ` ( A / ( _i ^ k ) ) ) = ( Re ` ( A / ( _i ^ k ) ) ) |
|
| 2 | 1 | dfitg | |- S. (/) A _d x = sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. (/) /\ 0 <_ ( Re ` ( A / ( _i ^ k ) ) ) ) , ( Re ` ( A / ( _i ^ k ) ) ) , 0 ) ) ) ) |
| 3 | ifan | |- if ( ( x e. (/) /\ 0 <_ ( Re ` ( A / ( _i ^ k ) ) ) ) , ( Re ` ( A / ( _i ^ k ) ) ) , 0 ) = if ( x e. (/) , if ( 0 <_ ( Re ` ( A / ( _i ^ k ) ) ) , ( Re ` ( A / ( _i ^ k ) ) ) , 0 ) , 0 ) |
|
| 4 | noel | |- -. x e. (/) |
|
| 5 | 4 | iffalsei | |- if ( x e. (/) , if ( 0 <_ ( Re ` ( A / ( _i ^ k ) ) ) , ( Re ` ( A / ( _i ^ k ) ) ) , 0 ) , 0 ) = 0 |
| 6 | 3 5 | eqtri | |- if ( ( x e. (/) /\ 0 <_ ( Re ` ( A / ( _i ^ k ) ) ) ) , ( Re ` ( A / ( _i ^ k ) ) ) , 0 ) = 0 |
| 7 | 6 | mpteq2i | |- ( x e. RR |-> if ( ( x e. (/) /\ 0 <_ ( Re ` ( A / ( _i ^ k ) ) ) ) , ( Re ` ( A / ( _i ^ k ) ) ) , 0 ) ) = ( x e. RR |-> 0 ) |
| 8 | fconstmpt | |- ( RR X. { 0 } ) = ( x e. RR |-> 0 ) |
|
| 9 | 7 8 | eqtr4i | |- ( x e. RR |-> if ( ( x e. (/) /\ 0 <_ ( Re ` ( A / ( _i ^ k ) ) ) ) , ( Re ` ( A / ( _i ^ k ) ) ) , 0 ) ) = ( RR X. { 0 } ) |
| 10 | 9 | fveq2i | |- ( S.2 ` ( x e. RR |-> if ( ( x e. (/) /\ 0 <_ ( Re ` ( A / ( _i ^ k ) ) ) ) , ( Re ` ( A / ( _i ^ k ) ) ) , 0 ) ) ) = ( S.2 ` ( RR X. { 0 } ) ) |
| 11 | itg20 | |- ( S.2 ` ( RR X. { 0 } ) ) = 0 |
|
| 12 | 10 11 | eqtri | |- ( S.2 ` ( x e. RR |-> if ( ( x e. (/) /\ 0 <_ ( Re ` ( A / ( _i ^ k ) ) ) ) , ( Re ` ( A / ( _i ^ k ) ) ) , 0 ) ) ) = 0 |
| 13 | 12 | oveq2i | |- ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. (/) /\ 0 <_ ( Re ` ( A / ( _i ^ k ) ) ) ) , ( Re ` ( A / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( ( _i ^ k ) x. 0 ) |
| 14 | ax-icn | |- _i e. CC |
|
| 15 | elfznn0 | |- ( k e. ( 0 ... 3 ) -> k e. NN0 ) |
|
| 16 | expcl | |- ( ( _i e. CC /\ k e. NN0 ) -> ( _i ^ k ) e. CC ) |
|
| 17 | 14 15 16 | sylancr | |- ( k e. ( 0 ... 3 ) -> ( _i ^ k ) e. CC ) |
| 18 | 17 | mul01d | |- ( k e. ( 0 ... 3 ) -> ( ( _i ^ k ) x. 0 ) = 0 ) |
| 19 | 13 18 | eqtrid | |- ( k e. ( 0 ... 3 ) -> ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. (/) /\ 0 <_ ( Re ` ( A / ( _i ^ k ) ) ) ) , ( Re ` ( A / ( _i ^ k ) ) ) , 0 ) ) ) ) = 0 ) |
| 20 | 19 | sumeq2i | |- sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. (/) /\ 0 <_ ( Re ` ( A / ( _i ^ k ) ) ) ) , ( Re ` ( A / ( _i ^ k ) ) ) , 0 ) ) ) ) = sum_ k e. ( 0 ... 3 ) 0 |
| 21 | fzfi | |- ( 0 ... 3 ) e. Fin |
|
| 22 | 21 | olci | |- ( ( 0 ... 3 ) C_ ( ZZ>= ` 0 ) \/ ( 0 ... 3 ) e. Fin ) |
| 23 | sumz | |- ( ( ( 0 ... 3 ) C_ ( ZZ>= ` 0 ) \/ ( 0 ... 3 ) e. Fin ) -> sum_ k e. ( 0 ... 3 ) 0 = 0 ) |
|
| 24 | 22 23 | ax-mp | |- sum_ k e. ( 0 ... 3 ) 0 = 0 |
| 25 | 20 24 | eqtri | |- sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. (/) /\ 0 <_ ( Re ` ( A / ( _i ^ k ) ) ) ) , ( Re ` ( A / ( _i ^ k ) ) ) , 0 ) ) ) ) = 0 |
| 26 | 2 25 | eqtri | |- S. (/) A _d x = 0 |