This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition equivalent to floor. (Contributed by NM, 15-Aug-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | flbi2 | |- ( ( N e. ZZ /\ F e. RR ) -> ( ( |_ ` ( N + F ) ) = N <-> ( 0 <_ F /\ F < 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre | |- ( N e. ZZ -> N e. RR ) |
|
| 2 | readdcl | |- ( ( N e. RR /\ F e. RR ) -> ( N + F ) e. RR ) |
|
| 3 | 1 2 | sylan | |- ( ( N e. ZZ /\ F e. RR ) -> ( N + F ) e. RR ) |
| 4 | simpl | |- ( ( N e. ZZ /\ F e. RR ) -> N e. ZZ ) |
|
| 5 | flbi | |- ( ( ( N + F ) e. RR /\ N e. ZZ ) -> ( ( |_ ` ( N + F ) ) = N <-> ( N <_ ( N + F ) /\ ( N + F ) < ( N + 1 ) ) ) ) |
|
| 6 | 3 4 5 | syl2anc | |- ( ( N e. ZZ /\ F e. RR ) -> ( ( |_ ` ( N + F ) ) = N <-> ( N <_ ( N + F ) /\ ( N + F ) < ( N + 1 ) ) ) ) |
| 7 | addge01 | |- ( ( N e. RR /\ F e. RR ) -> ( 0 <_ F <-> N <_ ( N + F ) ) ) |
|
| 8 | 1re | |- 1 e. RR |
|
| 9 | ltadd2 | |- ( ( F e. RR /\ 1 e. RR /\ N e. RR ) -> ( F < 1 <-> ( N + F ) < ( N + 1 ) ) ) |
|
| 10 | 8 9 | mp3an2 | |- ( ( F e. RR /\ N e. RR ) -> ( F < 1 <-> ( N + F ) < ( N + 1 ) ) ) |
| 11 | 10 | ancoms | |- ( ( N e. RR /\ F e. RR ) -> ( F < 1 <-> ( N + F ) < ( N + 1 ) ) ) |
| 12 | 7 11 | anbi12d | |- ( ( N e. RR /\ F e. RR ) -> ( ( 0 <_ F /\ F < 1 ) <-> ( N <_ ( N + F ) /\ ( N + F ) < ( N + 1 ) ) ) ) |
| 13 | 1 12 | sylan | |- ( ( N e. ZZ /\ F e. RR ) -> ( ( 0 <_ F /\ F < 1 ) <-> ( N <_ ( N + F ) /\ ( N + F ) < ( N + 1 ) ) ) ) |
| 14 | 6 13 | bitr4d | |- ( ( N e. ZZ /\ F e. RR ) -> ( ( |_ ` ( N + F ) ) = N <-> ( 0 <_ F /\ F < 1 ) ) ) |