This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer can be moved in and out of the floor of a sum. (Contributed by NM, 27-Apr-2005) (Proof shortened by Fan Zheng, 16-Jun-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fladdz | |- ( ( A e. RR /\ N e. ZZ ) -> ( |_ ` ( A + N ) ) = ( ( |_ ` A ) + N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reflcl | |- ( A e. RR -> ( |_ ` A ) e. RR ) |
|
| 2 | 1 | adantr | |- ( ( A e. RR /\ N e. ZZ ) -> ( |_ ` A ) e. RR ) |
| 3 | simpl | |- ( ( A e. RR /\ N e. ZZ ) -> A e. RR ) |
|
| 4 | simpr | |- ( ( A e. RR /\ N e. ZZ ) -> N e. ZZ ) |
|
| 5 | 4 | zred | |- ( ( A e. RR /\ N e. ZZ ) -> N e. RR ) |
| 6 | flle | |- ( A e. RR -> ( |_ ` A ) <_ A ) |
|
| 7 | 6 | adantr | |- ( ( A e. RR /\ N e. ZZ ) -> ( |_ ` A ) <_ A ) |
| 8 | 2 3 5 7 | leadd1dd | |- ( ( A e. RR /\ N e. ZZ ) -> ( ( |_ ` A ) + N ) <_ ( A + N ) ) |
| 9 | 1red | |- ( ( A e. RR /\ N e. ZZ ) -> 1 e. RR ) |
|
| 10 | 2 9 | readdcld | |- ( ( A e. RR /\ N e. ZZ ) -> ( ( |_ ` A ) + 1 ) e. RR ) |
| 11 | flltp1 | |- ( A e. RR -> A < ( ( |_ ` A ) + 1 ) ) |
|
| 12 | 11 | adantr | |- ( ( A e. RR /\ N e. ZZ ) -> A < ( ( |_ ` A ) + 1 ) ) |
| 13 | 3 10 5 12 | ltadd1dd | |- ( ( A e. RR /\ N e. ZZ ) -> ( A + N ) < ( ( ( |_ ` A ) + 1 ) + N ) ) |
| 14 | 2 | recnd | |- ( ( A e. RR /\ N e. ZZ ) -> ( |_ ` A ) e. CC ) |
| 15 | 1cnd | |- ( ( A e. RR /\ N e. ZZ ) -> 1 e. CC ) |
|
| 16 | 5 | recnd | |- ( ( A e. RR /\ N e. ZZ ) -> N e. CC ) |
| 17 | 14 15 16 | add32d | |- ( ( A e. RR /\ N e. ZZ ) -> ( ( ( |_ ` A ) + 1 ) + N ) = ( ( ( |_ ` A ) + N ) + 1 ) ) |
| 18 | 13 17 | breqtrd | |- ( ( A e. RR /\ N e. ZZ ) -> ( A + N ) < ( ( ( |_ ` A ) + N ) + 1 ) ) |
| 19 | 3 5 | readdcld | |- ( ( A e. RR /\ N e. ZZ ) -> ( A + N ) e. RR ) |
| 20 | 3 | flcld | |- ( ( A e. RR /\ N e. ZZ ) -> ( |_ ` A ) e. ZZ ) |
| 21 | 20 4 | zaddcld | |- ( ( A e. RR /\ N e. ZZ ) -> ( ( |_ ` A ) + N ) e. ZZ ) |
| 22 | flbi | |- ( ( ( A + N ) e. RR /\ ( ( |_ ` A ) + N ) e. ZZ ) -> ( ( |_ ` ( A + N ) ) = ( ( |_ ` A ) + N ) <-> ( ( ( |_ ` A ) + N ) <_ ( A + N ) /\ ( A + N ) < ( ( ( |_ ` A ) + N ) + 1 ) ) ) ) |
|
| 23 | 19 21 22 | syl2anc | |- ( ( A e. RR /\ N e. ZZ ) -> ( ( |_ ` ( A + N ) ) = ( ( |_ ` A ) + N ) <-> ( ( ( |_ ` A ) + N ) <_ ( A + N ) /\ ( A + N ) < ( ( ( |_ ` A ) + N ) + 1 ) ) ) ) |
| 24 | 8 18 23 | mpbir2and | |- ( ( A e. RR /\ N e. ZZ ) -> ( |_ ` ( A + N ) ) = ( ( |_ ` A ) + N ) ) |