This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: When its successor is subtracted from a class of ordinal numbers, an ordinal number is less than the minimum of the resulting subclass. (Contributed by NM, 1-Dec-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onmindif | |- ( ( A C_ On /\ B e. On ) -> B e. |^| ( A \ suc B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif | |- ( x e. ( A \ suc B ) <-> ( x e. A /\ -. x e. suc B ) ) |
|
| 2 | ssel2 | |- ( ( A C_ On /\ x e. A ) -> x e. On ) |
|
| 3 | ontri1 | |- ( ( x e. On /\ B e. On ) -> ( x C_ B <-> -. B e. x ) ) |
|
| 4 | onsssuc | |- ( ( x e. On /\ B e. On ) -> ( x C_ B <-> x e. suc B ) ) |
|
| 5 | 3 4 | bitr3d | |- ( ( x e. On /\ B e. On ) -> ( -. B e. x <-> x e. suc B ) ) |
| 6 | 5 | con1bid | |- ( ( x e. On /\ B e. On ) -> ( -. x e. suc B <-> B e. x ) ) |
| 7 | 2 6 | sylan | |- ( ( ( A C_ On /\ x e. A ) /\ B e. On ) -> ( -. x e. suc B <-> B e. x ) ) |
| 8 | 7 | biimpd | |- ( ( ( A C_ On /\ x e. A ) /\ B e. On ) -> ( -. x e. suc B -> B e. x ) ) |
| 9 | 8 | exp31 | |- ( A C_ On -> ( x e. A -> ( B e. On -> ( -. x e. suc B -> B e. x ) ) ) ) |
| 10 | 9 | com23 | |- ( A C_ On -> ( B e. On -> ( x e. A -> ( -. x e. suc B -> B e. x ) ) ) ) |
| 11 | 10 | imp4b | |- ( ( A C_ On /\ B e. On ) -> ( ( x e. A /\ -. x e. suc B ) -> B e. x ) ) |
| 12 | 1 11 | biimtrid | |- ( ( A C_ On /\ B e. On ) -> ( x e. ( A \ suc B ) -> B e. x ) ) |
| 13 | 12 | ralrimiv | |- ( ( A C_ On /\ B e. On ) -> A. x e. ( A \ suc B ) B e. x ) |
| 14 | elintg | |- ( B e. On -> ( B e. |^| ( A \ suc B ) <-> A. x e. ( A \ suc B ) B e. x ) ) |
|
| 15 | 14 | adantl | |- ( ( A C_ On /\ B e. On ) -> ( B e. |^| ( A \ suc B ) <-> A. x e. ( A \ suc B ) B e. x ) ) |
| 16 | 13 15 | mpbird | |- ( ( A C_ On /\ B e. On ) -> B e. |^| ( A \ suc B ) ) |