This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin23lem22 . (Contributed by Stefan O'Rear, 1-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fin23lem23 | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ i e. _om ) -> E! j e. S ( j i^i S ) ~~ i ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin23lem26 | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ i e. _om ) -> E. j e. S ( j i^i S ) ~~ i ) |
|
| 2 | ensym | |- ( ( a i^i S ) ~~ i -> i ~~ ( a i^i S ) ) |
|
| 3 | entr | |- ( ( ( j i^i S ) ~~ i /\ i ~~ ( a i^i S ) ) -> ( j i^i S ) ~~ ( a i^i S ) ) |
|
| 4 | 2 3 | sylan2 | |- ( ( ( j i^i S ) ~~ i /\ ( a i^i S ) ~~ i ) -> ( j i^i S ) ~~ ( a i^i S ) ) |
| 5 | simpl | |- ( ( S C_ _om /\ ( j e. S /\ a e. S ) ) -> S C_ _om ) |
|
| 6 | simprl | |- ( ( S C_ _om /\ ( j e. S /\ a e. S ) ) -> j e. S ) |
|
| 7 | 5 6 | sseldd | |- ( ( S C_ _om /\ ( j e. S /\ a e. S ) ) -> j e. _om ) |
| 8 | nnfi | |- ( j e. _om -> j e. Fin ) |
|
| 9 | inss1 | |- ( j i^i S ) C_ j |
|
| 10 | ssfi | |- ( ( j e. Fin /\ ( j i^i S ) C_ j ) -> ( j i^i S ) e. Fin ) |
|
| 11 | 8 9 10 | sylancl | |- ( j e. _om -> ( j i^i S ) e. Fin ) |
| 12 | 7 11 | syl | |- ( ( S C_ _om /\ ( j e. S /\ a e. S ) ) -> ( j i^i S ) e. Fin ) |
| 13 | simprr | |- ( ( S C_ _om /\ ( j e. S /\ a e. S ) ) -> a e. S ) |
|
| 14 | 5 13 | sseldd | |- ( ( S C_ _om /\ ( j e. S /\ a e. S ) ) -> a e. _om ) |
| 15 | nnfi | |- ( a e. _om -> a e. Fin ) |
|
| 16 | inss1 | |- ( a i^i S ) C_ a |
|
| 17 | ssfi | |- ( ( a e. Fin /\ ( a i^i S ) C_ a ) -> ( a i^i S ) e. Fin ) |
|
| 18 | 15 16 17 | sylancl | |- ( a e. _om -> ( a i^i S ) e. Fin ) |
| 19 | 14 18 | syl | |- ( ( S C_ _om /\ ( j e. S /\ a e. S ) ) -> ( a i^i S ) e. Fin ) |
| 20 | nnord | |- ( j e. _om -> Ord j ) |
|
| 21 | nnord | |- ( a e. _om -> Ord a ) |
|
| 22 | ordtri2or2 | |- ( ( Ord j /\ Ord a ) -> ( j C_ a \/ a C_ j ) ) |
|
| 23 | 20 21 22 | syl2an | |- ( ( j e. _om /\ a e. _om ) -> ( j C_ a \/ a C_ j ) ) |
| 24 | 7 14 23 | syl2anc | |- ( ( S C_ _om /\ ( j e. S /\ a e. S ) ) -> ( j C_ a \/ a C_ j ) ) |
| 25 | ssrin | |- ( j C_ a -> ( j i^i S ) C_ ( a i^i S ) ) |
|
| 26 | ssrin | |- ( a C_ j -> ( a i^i S ) C_ ( j i^i S ) ) |
|
| 27 | 25 26 | orim12i | |- ( ( j C_ a \/ a C_ j ) -> ( ( j i^i S ) C_ ( a i^i S ) \/ ( a i^i S ) C_ ( j i^i S ) ) ) |
| 28 | 24 27 | syl | |- ( ( S C_ _om /\ ( j e. S /\ a e. S ) ) -> ( ( j i^i S ) C_ ( a i^i S ) \/ ( a i^i S ) C_ ( j i^i S ) ) ) |
| 29 | fin23lem25 | |- ( ( ( j i^i S ) e. Fin /\ ( a i^i S ) e. Fin /\ ( ( j i^i S ) C_ ( a i^i S ) \/ ( a i^i S ) C_ ( j i^i S ) ) ) -> ( ( j i^i S ) ~~ ( a i^i S ) <-> ( j i^i S ) = ( a i^i S ) ) ) |
|
| 30 | 12 19 28 29 | syl3anc | |- ( ( S C_ _om /\ ( j e. S /\ a e. S ) ) -> ( ( j i^i S ) ~~ ( a i^i S ) <-> ( j i^i S ) = ( a i^i S ) ) ) |
| 31 | ordom | |- Ord _om |
|
| 32 | fin23lem24 | |- ( ( ( Ord _om /\ S C_ _om ) /\ ( j e. S /\ a e. S ) ) -> ( ( j i^i S ) = ( a i^i S ) <-> j = a ) ) |
|
| 33 | 31 32 | mpanl1 | |- ( ( S C_ _om /\ ( j e. S /\ a e. S ) ) -> ( ( j i^i S ) = ( a i^i S ) <-> j = a ) ) |
| 34 | 30 33 | bitrd | |- ( ( S C_ _om /\ ( j e. S /\ a e. S ) ) -> ( ( j i^i S ) ~~ ( a i^i S ) <-> j = a ) ) |
| 35 | 4 34 | imbitrid | |- ( ( S C_ _om /\ ( j e. S /\ a e. S ) ) -> ( ( ( j i^i S ) ~~ i /\ ( a i^i S ) ~~ i ) -> j = a ) ) |
| 36 | 35 | ralrimivva | |- ( S C_ _om -> A. j e. S A. a e. S ( ( ( j i^i S ) ~~ i /\ ( a i^i S ) ~~ i ) -> j = a ) ) |
| 37 | 36 | ad2antrr | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ i e. _om ) -> A. j e. S A. a e. S ( ( ( j i^i S ) ~~ i /\ ( a i^i S ) ~~ i ) -> j = a ) ) |
| 38 | ineq1 | |- ( j = a -> ( j i^i S ) = ( a i^i S ) ) |
|
| 39 | 38 | breq1d | |- ( j = a -> ( ( j i^i S ) ~~ i <-> ( a i^i S ) ~~ i ) ) |
| 40 | 39 | reu4 | |- ( E! j e. S ( j i^i S ) ~~ i <-> ( E. j e. S ( j i^i S ) ~~ i /\ A. j e. S A. a e. S ( ( ( j i^i S ) ~~ i /\ ( a i^i S ) ~~ i ) -> j = a ) ) ) |
| 41 | 1 37 40 | sylanbrc | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ i e. _om ) -> E! j e. S ( j i^i S ) ~~ i ) |