This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: No member of a set of ordinal numbers belongs to its minimum. (Contributed by NM, 2-Feb-1997)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onnmin | |- ( ( A C_ On /\ B e. A ) -> -. B e. |^| A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intss1 | |- ( B e. A -> |^| A C_ B ) |
|
| 2 | 1 | adantl | |- ( ( A C_ On /\ B e. A ) -> |^| A C_ B ) |
| 3 | ne0i | |- ( B e. A -> A =/= (/) ) |
|
| 4 | oninton | |- ( ( A C_ On /\ A =/= (/) ) -> |^| A e. On ) |
|
| 5 | 3 4 | sylan2 | |- ( ( A C_ On /\ B e. A ) -> |^| A e. On ) |
| 6 | ssel2 | |- ( ( A C_ On /\ B e. A ) -> B e. On ) |
|
| 7 | ontri1 | |- ( ( |^| A e. On /\ B e. On ) -> ( |^| A C_ B <-> -. B e. |^| A ) ) |
|
| 8 | 5 6 7 | syl2anc | |- ( ( A C_ On /\ B e. A ) -> ( |^| A C_ B <-> -. B e. |^| A ) ) |
| 9 | 2 8 | mpbid | |- ( ( A C_ On /\ B e. A ) -> -. B e. |^| A ) |