This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A class is ordinal if and only if its successor is ordinal. (Contributed by NM, 3-Apr-1995) Avoid ax-un . (Revised by BTernaryTau, 6-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordsuc | |- ( Ord A <-> Ord suc A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordsuci | |- ( Ord A -> Ord suc A ) |
|
| 2 | sucidg | |- ( A e. _V -> A e. suc A ) |
|
| 3 | ordelord | |- ( ( Ord suc A /\ A e. suc A ) -> Ord A ) |
|
| 4 | 3 | ex | |- ( Ord suc A -> ( A e. suc A -> Ord A ) ) |
| 5 | 2 4 | syl5com | |- ( A e. _V -> ( Ord suc A -> Ord A ) ) |
| 6 | sucprc | |- ( -. A e. _V -> suc A = A ) |
|
| 7 | 6 | eqcomd | |- ( -. A e. _V -> A = suc A ) |
| 8 | ordeq | |- ( A = suc A -> ( Ord A <-> Ord suc A ) ) |
|
| 9 | 7 8 | syl | |- ( -. A e. _V -> ( Ord A <-> Ord suc A ) ) |
| 10 | 9 | biimprd | |- ( -. A e. _V -> ( Ord suc A -> Ord A ) ) |
| 11 | 5 10 | pm2.61i | |- ( Ord suc A -> Ord A ) |
| 12 | 1 11 | impbii | |- ( Ord A <-> Ord suc A ) |